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Chapter 1

Introduction

In this chapter we will start out by giving a full description of the problem area. We will on basis of this
description, write the problem statement, in which we outline the problems in key sentences. Following
this, we will describe how we will solve the problems, and give an example off what the product of this
rapport could be used for. We will summarize this with a few key sentences, which we consider to be the
goal of the project. We will finish this chapter off by describing the layout of the report, and describing
some of the notation used throughout the report.

1.1 Problem Area

There is a Danish programming game called Myrekrig (Ant war)!. The concept is that people program
an ant algorithm (From now on just called an ant) in a programming language (originally C), adhering to
a set of predefined rules. To determine the best algorithm, two or more ants will be run in a simulation
engine, to determine which algorithm is the best.

As such C is just fine for the task, but there are several issues which justify designing a special pur-
pose language for the simulations. First of all, C has a lot of functionality, which is not needed
in designing an ant. This can be quite overwhelming for the unexperienced programmer. Further-
more it would be nice to have a higher level of abstraction, than C provides. For example, it would
be more intuitive to read and write commands like walk(LEFT) for moving an ant to the left, or
if (ezamine(RIGHT)) = FOOD then MoveAnt(RIGHT) for moving an ant to the right if it sees food.
Designing a new language enables the designer to include only the important language constructions, and
it is also possible to design a syntax which supports the underlying concept of the game.

The problem in key sentences is:

e At present time there is no specific language for creating a game of antwar

¢ Existing programming languages are often very complex, and does not provide constructs specifically
for what will be required when creating a game of ant war.

1.2 Solution to the Problem

The solution to the problem is to create a special purpose programming language specifically for Ant
War. We will call this language AWL (Ant War Language).

Here we will give a description of how a game of ant wars could look like using AWL, we will highlight
certain terms, that will be used throughout the report, the first time they appear.

IThe home-site for myrekrig is: http://wwu.myrekrig.dk/
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1.3. OUTLINE OF THE PROJECT CHAPTER 1. INTRODUCTION

We define a world consisting of a 2D-board of n x n fields/squares, in which teams can exist. Each team
will consist of a number of ants. The team owners will define algorithms for their teams of ants and once
the game is started, time will show who has the best algorithm. On their own hands, the ants will venture
out into the world, gather food, and bring it back to their respective bases and in exchange get another
ant. The size of the world, the maximum number of ants and the number of food pieces that exist in a
single execution of the program is defined by the programmer. In the world the programmer can define
some common memory which all teams can access and modify if they so choose. Furthermore each team
will have some team memory which all ants on the team can access but which ants of other teams cannot
access. Finally each ant has a pr/home/tim/uni/awlcvs/awl/docs/awl main.psivate memory
which other ants cannot access. It is now up to the programmer to define the world as he sees fit, this
could include making sure that if an ant wanders out over the side of the defined board it will “magically”
re-appear on the other side of the board. The programmer also defines how the game should end, if
indeed he wants it to end and not run “forever”.

Below we will, in key sentences, describe what the programming language must provide:

e AWL has to contain high level language constructs, such as in C.

e AWL has to provide specific constructs for the programmer, so that rules such as walk(LEFT)are
easy to create.

e AWL has to provide a construct to allow the programmer to move the focus from one ant and team
to another ant and team

e AWL has to provide some “ant memory” which differ in scope.
e AWL has to provide a construct for creating teams.

e AWL has to compile to an abstract machine, which we will call AWLAM(AWL Abstract Machine).
The goal of this project will then be to:

¢ Define the grammar of the high level language AWL, using Backus Naur Form(BNF)
e Define an operational big step semantic for AWL?
e Define the abstract machine AWLAM and have the AWL compile to this.

e Prove that the translated code is actually equivalent with the original AWL code.

1.3 Outline of the project

The project is divided into eight chapters, each covering their own topic of the project. This chapter is
an introduction to the project. Chapter 2 is dealing with the syntax of our programming language, called
AWL. We will describe the grammar of AWL, by the BNF notation, and will go into detail with what
each single syntactic element does. Further on we will give an explanation of why the syntax is designed
the way it is.

Chapter 3 deals with the operational semantic of AWL. We will describe the semantic details of AWL,
and of course describe it in detail. Chapter 4 gives the definition of the abstract machine AWLAM, and
give an operational semantic for this machine as well. The abstract machine’s instruction set will be our
target language, and in chapter 5 we will give the details on how the translation is actually done. To
prove that the translation of AWL to AWLAM machine code is correct we will, in chapter 6, give proof
of correctness for the translation. Finally we will describe the actual implementation of the AWLAM
interpreter in chapter 7. In each of the chapters 1 through 7 there will be a summary which will serve as
a sub conclusion for the chapter. Chapter 8 will contain the overall conclusion for the project.

20Operational big step semantics are also know as “natural semantics”.
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CHAPTER 1. INTRODUCTION 1.4. NOTATION

Besides that, the project contains an appendix with some of the proofs from chapter 6, and an appendix
showing some of the details on the AWL to AWLAM compiler. There will also be a list on the literature
used in the project.

1.4 Notation

In this report we will assume that the reader is familiar with basic set theory, though, we do use notations
not normally considered part of basic set theory. Generally we use the notation of [1] as this has been
the literature of our studies. In this section, the notation used throughout this report is briefly explained
and examples are shown. However, at some points we might use a notation not discussed here. This
is primarily the case when a notation is only used in a small part of the report. In these cases we will
shortly address the notation in the beginning of the chapter or section in which it is used.

1.4.1 Total and partial function space

Given the sets A and B, the notation A — B describes the set of functions from A to B. Any element in
that set is therefore a function that takes something from the set A and returns something from the set
B. Such a function f is written as f : A — B (or as f € A — B). Therefore, Env = Var — Loc describes
that the set Env consists of elements, where each element is a function from Var to Loc.Referring to
environments and locations as in the example above, it would, however, be more correct written as
Env = Var < Loc. Var — Loc indicates that there is not necessarily an element of Loc defined for every
element of Var. We call the elements of Var — Loc partial functions?.

1.4.2 Values

Throughout the report we will be using the following notation regarding values of certain types.

z€ 7 (Numbers)

be Bool (Booleans)

d € Dir (Directions)

v € ZUBoolUDir (Union of numbers, booleans and directions)

1.4.3 States

A state s is a (partial) function, described as in section 1.4.1. Also it might be represented as [a — 4,b + 3, ¢ > 2]
which means the state where the variable a maps to 4, b maps to 3, and ¢ maps to 2 (or a = 4, b = 3,

and ¢ = 2). Often we use this notation for showing changes in a state. Consider the state s above. If we

want to refer to a new state s’ that is equal to s, except that b = 5, we will describe s’ as s[b— 5] (s
except that b maps to 5).

1.5 Summary

In this chapter we have described the problem that this project aims to solve. Furthermore we have listed
some demands that AWL must adhere to, and some general demands for the project. Following this we
have described the outline of the report and described some notations used trough-out the report.

3 Another notation for this is Var — Loc, but we will not use it in this report.
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Chapter 2

Syntax

In this chapter we define the grammar for AWL expressed in BNF notation (Backus Naur Form). The
grammar should make it easy for the programmer to understand the concepts of AWL, and it should
clarify distinctions between constructs which are semantically different.

The grammar has been divided into intuitive sub-categories to ease the reading and understanding, each
with its own heading. It should however, be seen as a whole grammar. On the right side of each rule
there is a combination of letter(s) and number(s) in parentheses. This is only meant as an easy reference
to the individual rules, and are not part of the grammar itself.

2.1 World

These rules describe the general program construction. (P1) shows that an AWL program consists of a
world. (P2) tells us that the world is constructed by three integer literal parameters and by defining the
memory, which will be accessible for the ants. Also a world contains declarations of rules and ant types
and finally a main section. The three integer literals are used in the initialization of the world and tells
us the size of the world, the maximum number of ants there can be on each team and the maximum
amount of food in the world. (P3) describes the construction of main, which consists of declarations and
commands.

Program == World (P1)

World u=  world(IntLiteral, Intliteral, IntLiteral) (P2)
{Memory NTBRuleDecls TBRuleDecls AntTypeDecls Main}

Main == main{TeamDecls VarInits ArrayInits Commands} (P3)

The basic idea is that a program should be divided into some logical parts. First of all we want to
separate the ants from the world, so that they can not access everything. This has been enforced through
the memory and rule concepts. The only data available to the ant (besides itself) is the ant memory, and
the only methods available to the ant are the ones declared as rules.

2.2 Memory

There are three different scopes when declaring memory for the ants. A piece of memory can be either
private for each ant, private for the team or common to all ants on all teams. They have to be declared in
a specific order as seen in (M1). Common memory is initialized when declared, so that the programmer
can give ants access to some common attributes like worldsize. Team and private memory are only

14



CHAPTER 2. SYNTAX 2.3. RULES

declared, and it is up to the ants what they put in those variables. The memory defined is also persistent,
this means that it will be saved from turn to turn?.

Memory nw=  CommonDecls Teambraindecls PrivateDecls — (M1)
CommonDecls = common Varlnit CommonDecls | € (M2)
TeambrainDecls = teambrain VarDecl TeambrainDecls | € (M3)
PrivateDecls = private VarDecl PrivateDecls | € (M4)

This construction has been included to be able to control which data is available to the ant and which
is not. It should be possible for the world constructor to define how much memory each team should
have access to. There will be a basis for difference in the behavior of the ants if they have access to an
unlimited number of integers as opposed to only one integer.

2.3 Rules

The category Rules describes the syntax for adding functionality which the ant types can use. A rule can
be one of two different types: NTBRule (R1) or TBRule (R4). TB means “turn-based”, and NTB means
“non turn-based”. The difference between the two types is that a TB rule can only be called once every
turn for each ant, while the NTB can be called several times (e.g. an ant can only walk once every turn,
but may do several calculations on some number). Also the NTB rule may have a return type, which is
a SimpleType. Both rule types can take parameters, and have their code embraced in curly brackets.

NTBRuleDecls ::=  NTBRuleDecl NTBRuleDecls | € (R1)
NTBRuleDecl u=  rule Identifier(FormalParmList) ReturnType { Commands }  (R2)
Return Type = : SimpleType (R3)
TBRuleDecls u=  TBRuleDecl TBRuleDecls | ¢ (R4)
TBRuleDecl = turn Identifier( FormalParmList) { Commands } (R5)

The reason for the Rule part is very similar to the memory. The world constructor must have some way
to control that the ants do not access functions, which they should not have any knowledge about. Again
it is up to the world constructor to define what should be accessible. It has been necessary to divide the
rules into two categories. Some functions could be called several times, and some should only be called
once. As an example it makes sense that it is only possible to call the walk command once for each turn.
But of course it is possible for the world implementor to specify otherwise.

2.4 Commands

This part of the grammar describes the basic commands in AWL. (C1) shows that commands are either a
single Command, or a Command followed by several other Commands. The first command is the assign
command (C2), which is used to assign some value to an existing variable. The mem commands (C3) are
used for assigning values to the memory variables of the ants. There is one command for each memory
type, which is common, team and private. These commands are used in the ant types to access ant
memory variables. The (C4) command is for assigning a value to an array. The location in the array is
specified by the expression inside the square brackets. (C5) is a call to a declared rule with a parameter
list. Rules (C6) and (C7) are general constructs for selection and iteration: the if-else selection, and the
while loop.

Calling a TBRule and calling a NTBRule is semantically different (since a TBRule will end a turn, and
a NTBRule will not). Because of this, it should not be possible to confuse a call to a TBRule call with a

I This is a difference from memory declared by the team programmer inside the ant specification in that the latter is not
persistent.
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2.5. PARAMETERS CHAPTER 2. SYNTAX

call to a NTBRule (or the other way around) in the syntax of AWL. Therefore a call to a TBRule must
have the prefix endturn. The return command is used to return a value from a rule. Skip does nothing
but to skip, which means: nothing.

The command process will process one specific ant from one specific team using a given ant type. A call to
process will normally return when a TBRule is called with endturn. setProperty takes two expressions,
storage location and assign value). The command manipulates directly with memory, which means that
the programmer potentially has access to everything.

Commands =  Command Commands | e (C1)
Command Identifier = Exzpr ; (C2)
cmem Identifier = Ezpr ; | tmem Identifier = Expr; (C3)

pmem Identifier = Ezxpr ;

\

\

| Identifier [Exzpr] = Expr; (C4)
| Identifier (ActParmList) ; (C5)

| if(Ezpr){ Commands}else{ Commands} (C6)

\ while(Ezpr){ Commands} (C7)

| endturn Identifier (ActParmList) ; (C8)

| return Ezpr ; (C9)

| skip ; (C10)
| process(Ezpr,Ezpr,Identifier) ; (C11)
| setProperty(Ezpr, Expr) ; (C12)

Most of these constructs are quite similar to those of other existing languages, while some of the constructs
are unique to AWL. Section xxx in chapter xxx describes how the setProperty command can be useful
when implementing a standard environment.

2.5 Parameters

This category describes the way parameters should be declared and used in rules. One part is the
declaration of the formal parameters (PF2), which specifies the type of parameter required in a function,
and the other is the actual parameters (PA4), which are the parameters actually used as input to a rule,
when it is executed. All actual parameters are expressions, and expressions are explained a few categories
below.

FormalParmList ::=  FormalParm FormalParmList |e (PF1)
FormalParm = VarDecl; (PF2)
ActParmList :=  ActParm ActParmList | € (PA3)
ActParm w=  Ezpr; (PA4)

The reason we need these construct is to enable that rules can have arguments as input.

2.6 Ant Type Declarations

The AntType category describes the syntax for creating an AntType, i.e. a “race”. The declaration of
an ant can be a single declaration or may consist of several declarations one after another. Each ant
declaration must consist of the keyword anttype followed by an identifier, which is the name of the type.
Inside curly brackets the commands of the declared anttype will be used.

AntTypeDecls =  AntTypeDecl AntTypeDecls | € (AT1)
AntTypeDecl u= anttype Identifier{Commands} (AT2)

16



CHAPTER 2. SYNTAX 2.7. TEAM DECLARATIONS

With the separation of the world and the anttypes it is possible to change ants without actually changing
much in the world. Each anttype is defined as a sort of procedure. Though it is quite different from the
rules, and it makes it possible to easily see the difference of an ant and a rule, and thereby it helps us to
separate the ants from the rules.

2.7 Team Declarations

A team declaration (T2) defines how a team is initialized. The createTeam keyword is followed by an
identifier signifying the anttype, inclosed in brackets. A team declaration can be single declaration or
several declarations (T1).

TeamDecls =  TeamDecl TeamDecls | (T1)
TeamDecl u= createTeam(Identifier) ; (T2)

Each team is as said, of a certain anttype, and each team also have access to some memory, which is
common memory and team memory.

2.8 Variable Declarations

The category variable declarations covers variable initialization, variable declarations, array initializations
and array declarations. Variable initializations (V1) can be a single initialization or several initializations.
An initialization (V2) consists of a declaration and an assignment. Each variable declaration (V3) must
me prefixed with the keyword var and have a name and a simpletype (V7). The Array initialization and
declaration is done much the same way, except that the keyword array is used.

VarInits :=  VarInit VarInits | e (V1)
VarInit :=  VarDecl = Expr ; (V2)
VarDecl :=  var Identifier : Simple Type (V3)
ArrayInits = ArrayInit Arraylnits | € (V4)
ArraylInit :=  ArrayDec= Expr; (V5)
ArrayDec := array Identifier : Simple Type (V6)
SimpleType = integer | boolean | direction (V7)

These are standard declarations which is found in many programming languages such as C and Java.

2.9 Expressions

These rules show how expressions are made. A primary expression can be an expression in parentheses,
a literal, a reference to an array element, a rule call or a reference to a ant memory variable (E1). It can
also be one of the constructs get Property or random. An expression can be an arithmetic, a relational
or a boolean expression. Since the operators have different precedence, they have been organized so that
arithmetic expressions will be evaluated first, then relational expressions and finally boolean expression.

17



2.10. VARIOUS CHAPTER 2. SYNTAX

PrimaryEzpr = (Ezpr) | Literal (E1)

| Identifier [Expr] | Identifier (ActParmList)

| cmem Identifier | tmem Identifier | pmem Identifier

| getProperty(Ezpr)

| random(Ezpr)
Ezpr = OrEzpr (E2)
OrEzxpr nw=  OrEzpr or AndEzpr | AndExpr (E3)
AndEzpr nw=  AndFEzpr and EqualEzpr | EqualEzpr (E4)
EqualExpr nw=  EqualEzpr EqualOperator RelationalEzpr | RelationalEzpr  (EB)
EqualOperator = =l= (E6)
Relational Ezpr = RelationalEzpr RelationalOperator AddEzpr | AddEzpr (E7)
RelationalOperator = <|>|<=]|>= (EB)
AddEzpr :=  AddEzpr AddOperator MultEzpr | MultExpr (E9)
AddOperator = 4] - (E10)
MultEzpr =  MultEzpr MultOperator UnaryEzpr | UnaryEzpr (E11)
MultOperator = x|/ (E12)
UnaryEzpr = UnaryOperator PrimaryEzpression | PrimaryEzpression (E13)
UnaryOperator n= — ! (E14)

In general the expression part is quite similar to other languages. The only thing that could be different
is the precedence rules. We have chosen to use standard evaluation for arithmetic operators, and the
same for boolean.The reason for this is that most people are already familiar with these precedence rules.

The random expression is introduced to AWL, since the programmer will need a way to make his ants
take different choices. Otherwise all ants dedicated to a given ant type would follow the exact same
pattern. getProperty is the counterpart to the command setProperty. It gives direct access to fetch
values from any storage location, and can be very useful when implementing a standard environment.

2.10 Various

These rules describe the general types in AWL. An integer literal consist of an amount of digits. An
identifier always begins with a letter and may be followed by an arbitrary number of letters and digits.
A letter is an element in the English alphabet, and a number is a sequence of digits, which might be a
floating point number. The Direction literal is included to be be able to specify a direction.

Literal = BoolLiteral | IntLiteral | DirectionLiteral (V1)
BoolLiteral n=  true| false (V2)
IntLiteral :=  Digit IntLiteral | € (V3)
DirectionLiteral — ::=  left | right | up | down | center (V4)
Identifier = Letter | Identifier Letter | Identifier IntLiteral (V5)
Letter = alble|d/e|f|g/hlilj k/1|m|nlo|plalr/s|t|ulv|wx]y|z (v6)
| A[BIC|D|E/F|G|HLI|K|LM|N|O|P|QIRIS|T|U[V|W|X|Y|Z
Digit = 0]1]2/3|4/5|6|7|8|9 (V7)

We have decided to include some of the most common types. Besides that we have included a Direction
literal, which will be useful, and more intuitive to use when you for example want to specify, the direction
of an ant, rather than using numbers.

Table 2.1 on the facing page show how a program can be build from the syntax just defined. The left
column shows the code, while the right column contains some comments on what is happening.

2.11 Summary

In this chapter we have defined the grammar for AWL. We have tried to define a syntax, which is simpler
than that of other existing high level languages. On the other hand, we also wanted to use some constructs
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world{500,200,100){

‘World creation

A new world is created with the size 500x500. Each team will have
a maximum of 200 ants, and there will be a maximum of

100 pieces of food in the world at any given time.

common var cx : integer = 0;
teambrain var tx : integer = 0;
private var px : integer = 0;

Ant memory is declared

Common variables are stored one place in memory. Teambrain
variables are stored once for every created team, and private variables
are stored once for each ant.

rule myRule(var d : integer){
var x : integer = 0;
r=r+d;

}

The rule myRule is declared

The rule name is associated with the formal parameters,

the declarations and the commands. The current variable environment
is also stored with the rule (static variable binding).

anttype myAntType{
var y : integer = 0;
r(left);

}

The ant type myAntType is declared
The type name is associated with the declarations and the commands.
The current variable environment is also stored with the ant type.

main{
createTeam(team1);
createAnt(team1);
process(teaml, 0, myAntType);

}

The main section of the program.

A new team is created.

A ant is created for teaml.

Ant 0 on team1 is processed using the ant type myAntType

End of the world

Table 2.1: Example AWL program

19




2.11. SUMMARY CHAPTER 2. SYNTAX

of general purpose languages, since users will be familiar with those. The purpose of the syntax is also to
support the conceptual ideas in the problem area of this report - namely defining an ant world. Clearly
AWTL have no usage besides defining a world of ants.

The primary influences from modern high level languages, such as C and Java, are the basic variable types
and the selection and loop constructs. We have left out several data types, like floating point numbers,
to keep the programming language relatively simple.

We have aimed at constructing a language with some level of encapsulation. Each ant and team will
explore the world on its own, so they are defined with their own scope of variables. Each ant will only
have access to declared rules, which are defined by the programmer of the actual world. This has the
effect of encapsulating the ants. Since it is not necessary to have such encapsulation in other parts of the
programming language, we have decided to use this solution rather than a more general construct.

As the process has evolved we have realized that even simple additions to the language syntax can have
a huge impact on the complexity of the language. Especially in the operational semantics, which is the
subject of the next chapter.
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Chapter 3

Operational Semantics for AWL

In this chapter we will define the operational semantics for AWL.

Defining the operational semantics for any programming language consists of the following steps:

e Defining an abstract syntax with syntactic categories and constructs.
e Defining semantical sets and functions.

¢ Defining transition systems.

Operational semantics tells us how to execute our program, and thus how it should be understood.

When all this is done we will describe how AWL can be extended to include a standard environment.

3.1 Big Step Semantics

The semantics defined in this chapter is big step (or natural) semantics. This means that a whole
calculation is done in one transition.

We will define the configurations for a transition system in the following manner (example):
I'pecvar = (DecVar x Envy X Store) U Envy x Store

which means that a configuration in the category DecVar consists of one or more declarations, a variable
environment with updated variable bindings and a store with updated storage bindings.

We will use the following notation to define our transitions:

Premises
Conclusion

where
Conditions

An example of this could be the transition for multiplying two arithmetic expressions:

envy, sto aey —>qe 21 envy, sto - aes —>ge 22

envy, sto - ae;xaes —qe 2

where 2 = 21 - 29

The above transition should be read like “ae; multiplied with aey will give the result z, if ae; evaluates
to z; and aes evaluates to zo, with the condition that z; - zo equals 2”.
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3.2 Abstract Syntax

The semantics of a programming language is based on the syntax of the language. Since we don’t need
to check a program for syntactical errors at this point, we don’t need the entire concrete syntax from the
previous chapter. Instead we will define an abstract syntax, whose purpose is to describe the structure
of the different syntactical constructs. Later we can define semantic rules for each syntactical construct,
and group them by their categories.

3.2.1 Syntactic Categories

For each category we specify a meta variable. In the category Var the meta variable is z, which means

that when z is written in the syntactical rules, it could be any variable in Var.

We have three different kinds of literals in AWL — integer literals, boolean literals and direction literals.
n €  IntLit (Integer literals)

bl €  BoolLit (Boolean literals)
dl €  DirLit (Direction literals)

Likewise, we have three kinds of expressions. We also define the category exp, which is the set of all
expressions. We will use this to shorten our syntactical rules later in this chapter.

ae € AFEzpr (Arithmetic expressions)
be € BEzpr (Boolean expressions)
de € DEzpr (Direction expressions)
exp € AFEzpr U BEzpr U DEzpr (All expressions)

Variables, rules, turns, teams and ant types are identified with names in AWL,

T € Var (Variables)

re RuleName (Non turn based rule names)

te TurnName (Turn based rule names)

at €  AntTypeName (Ant type names)

and can all be declared.

Dy € DecVar (Variable declarations)
Dy e DecArray (Array declarations)
Dy € DecMemCommon (Common Memory declarations)
Dyt € DecMem Team (Teambrain Memory declarations)
Dyp € DecMemPrivate (Private Memory declarations)
Dy € DecRule (Non turn based rule declarations)
Dr € DecTurn (Turn based rule declarations)
Drgay €  DecTeam (Team declarations)
Dyt € DecAntType (Ant type declarations)
type € Type (Types)

Rules and turns can have multiple parameters, so we define a category for the formal parameters and a
category for the actual parameters.

Pp € FParm  (Formal parameter list)
Py e AParm  (Actual parameter list)

And last, but not least, we have the commands and the world construct.

Se Com (Commands)
w €  World (World program)
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3.2.2 Constructs for the Syntactical Categories

In this section we will define the structure of the elements in the syntactical categories. The structure
of literals, variables and the names of rules, turns, ant types and teams are given in the concrete syntax,
and since those categories have no real semantic value, we will not specify their structure again here.

The interesting categories are the ones with actual semantic value. Table 3.1 shows the structure of the
constructs for those categories.

ae = n|z|zee] | cmemz [tmemz [pmemz | r(Py4) | ae1+aes | ae1—aes
| aei*aes | aei/aes | (ae) | getProperty(ae)
be = bl|z|z[ae] | cmemz tmemz |pmemz | r(P4) | ae1==aes | aei1<aes
| ae1>aes | ae1<=aes | ae1>=aes | ae1! =aea | bey==bes
| bei! =bea | lbe | (be) | der==dea | de1! =de> | getProperty(ae)
de =  dl|z|zee] | cmemz tmemz [pmemz | 7(P4) | (de)
| getProperty(ae)
S = z=exp;| 7(Pa); | endturn t(Py);
cmem z = exp; | z[ae] = exp;
| tmem z = exp; [pmemzx = exp; | S1 S2 | skip;
| return exp; | if(be) {S1} else {S2}
| while(be) {S} | process(ae, ae, at); | setProperty(ae, exp)
Dy = varz:type = exp; Dy | €
Dy = array z[n]: type = exp; | €
Dgr = ruler(Pp){DyDaS} Dg |ruler(Pg):type {Dy DS} Dg | ¢
Dt = turnt(Pp) {DvDAS} Dr ‘6
Dar = anttypeat {DyDaS} Dyr|e
Drram = createTeam(z); Drpanm | €
Dy = private var z: type; Dy | €
Dyt = teambrain var z : type; Dy | €
Dyp = commonvar z :type; Dyp | €
Pr = varz:type; Pp e
Py = exp;Pale
w = world(zl,zg){DM(; DMT DMP DT DR DAT main{DTEAM DV DA S}}

Table 3.1: Abstract syntax for AWL

3.3 Environment

We will use the basics of the environment-store model®', when defining our environments. In short this
means that e.g. variables bind to storage locations, and storage locations bind to values.

So we have a set of locations Loc (like the memory of a normal computer). We will call elements in this
set [. Also, we have a function which, given a location, will return a value. The values of our model are
the natural numbers Z, boolean values B and directions D.

Store = Loc > ZUBUD

Elements in Store are called sto. Note that the relationship between Store and Loc is a partial function,
since not all locations need to have a value. We assume that we have an unlimited source of storage
locations.

We define an update notation for Store. The store sto[l — v] is the store sto' defined by

! H !
sto’ (I') = { zto ®) ig ﬁ/ i ﬁ

1, p. 86]
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WORLD

MAXANTS
MAXFOOD
TEAMCOUNT
CURRENTTEAM
CURRENTANT
COMMONDECLS
TEAMBRAINDECLS
PRIVATEDECLS
FOODBASE

W00 ~JO Ul WN = O

Table 3.2: Location constants.

ANTSIZE = ANTALLOC + sto(PRIVATEDECLS)
This calculation results in the number of storage location s
allocated to each ant

TEAMANTSSIZE

sto(ANTCOUNT) - ANTSIZE
This calculation results in the number of storage locations
allocated to all ants on each team.

FIRSTTEAM = COMMONBASE + sto(COMMONDECLS) + sto(MAXFOOD) - 2
This calculation results in the location where the first team is allocated.

TEAMSIZE = TEAMALLOC + sto(TEAMBRAINDECLS) + TEAMANTSIZE
This calculation results in the number of storage locations
allocated to each team.

COMMONBASE = FOODBASE + FOODCOUNT - 2
This calculation results in the base storage location of
common memory variables.

Table 3.3: Predefined calculations.

3.3.1 Storage Structure

The data elements of AWL has a somewhat predefined storage location. The first section of memory is
reserved to a number of keys values, such as the size of the ant world and the maximum number of ants.
In this part of the memory we also find the common ant memory variables, and the ant food coordinates.

The next section of memory is dedicated to the ant teams. Each team have some basic describing values,
and their own copy of the declared teambrain variables. Also each team has allocated storage for the
maximum number of ants possible, and each ant has its own copy of the declared private variables (as
well as its coordinates). Figure 3.1 shows the structure of the storage.

Because of this structure, some semantic rules need to make list of calculations. To simplify the cal-
culations we define location constants to use instead of numbers. The constants are defined in table
3.2.

Looking at figure 3.1 we also see that an ant has two coordinates allocated (besides the private memory),
and that a team has four. We define the constant values ANTALLOC = 2 and TEAMALLOC = J.

Even with the defined constants, the calculations can get quite long. Even though each small calculation
is not complicated, a long list of simple calculations still looks confusing. We will therefore predefine
some of the calculations here, and refer to them in the semantic rules. The predefined calculations are
shown in table 3.3. To understand the calculations refer to storage structure illustrated in figure 3.1.
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WORLDe&| 0 |World size
MAXANTS €| 1 |Max number of ants
MAXFOOD&| 2 |Max pieces of food

TEAMCOUNT&| 3 |Number of teams
CURRENTTEAME| 4 |Current team
CURRENTANTe| 5 |Current ant
COMMONDECLSe&| 6 [Common variable count
TEAMDECLS&| 7 [Team variable count
PRIVATEDECLS&| 8 |Private variable count
FOODBASE &| 9 [food - 0 -X
]— 10(food-0-Y
11 (food - 1 -X
. |12ffood-1-Y
I 13food - 1-x
14 (food - |-Y

Common var - 0

Common var -1

Common var -i

STARTTEAMe| 18

Team-0-no

19

Team - 0 - nextant

20

Team - 0 - Base X

21

Team-0-Base Y

22

Team -0-team var-0

23

Team -0-team var-1

24

Team -0-team var-j

25

Ant -0 - X Coord

26

Ant-0- Y Coord

27

Ant - 0 - private var -

0

28

Ant - 0 - private var -1

29

Ant - 0 - private var -

k

30

Ant-1- X Coord

31

Ant - 1- Y Coord

32

Ant - 1 - private var -

0

33

Ant - 1 - private var -1

34

Ant - 1 - private var -

k

35

Ant-i- X Coord

36

Ant-i- Y Coord

37

Ant - i - private var -

0

38

Ant - i - private var -1

39

Ant - i - private var -

k

40

Team-1-no

41

Team - 1 - nextant

42

Team - 1 - Base X

43

Team-1-Base Y

44

Team -1-team var-0

45

Team -1-team var-1

46

Team -1-team var-j

Figure 3.1: Memory ordering with locations
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3.3.2 Variable Environment

Our variable environment is a partial function from variables to locations ( partial because not all possible
variable names are necessarily bound to a location). We have to consider arrays, which means that we
need to keep track of array sizes. Also in the semantic rules regarding ant memory variables, we need to
store an index number (this is elaborated in the particular section).

There are three different variable types in AWL, and this should also be stored in the variable environment.
We can now define the set of variable environments as

Envy = (Var — Type x Loc) U
(Var — Type x Loec x Z) U
(Var — Type X Z) U

(

{next, return} — Loc)

We introduce the elements next and return with a special purpose in our variable environment. The
element next is used as a pointer to the next free location. The element return is used to store return
values for rules in AWL.

We define an update notation for Envy . The environment envy [z — (type, )] is the environment envj,
defined by

! —
envy (y) = (type, 1) ify==x

{ envy (y) ify#ax
The same notation applies for the rest of this environment as well as the rest of the environments defined
in this report.

3.3.3 Procedure Environment

There are two different procedure-like constructs in AWL - rules and ant types. We will store both of
them in the same procedure environment.

Rules in AWL can be both TB (turn based) rules and NTB (non turn based) rules. Both can have
multiple parameters, but only NTB rules can return a value. Rules in AWL have static variable bindings.
Since it is impossible to declare additional rules after initializing the main section of a program, it is
meaningless to have static rule bindings, so we choose to have dynamic rule bindings.

An ant type is similar to a rule, except it does not take any parameters, and it can not return any value.
Like rules, ant types have static variable bindings, dynamic rule bindings.

With that in mind, the definition of our procedure environment looks like this.

Envp = RuleName «— Com x FParm x Envy x DecVar x DecArray x Type U
RuleName < Com X FParm x Envy x DecVar x DecArray) U
TurnName < Com X FParm x Envy x DecVar x DecArray) U

(
(
(
(

AntTypeName — Com x Envy X DecVar x DecArray)

For each procedure we store the commands, the parameters, the current variable environment, and the
variable and array declarations in our rule environment?. For rules with a return type, we store return
type as well.

At the time of procedure declaration, only ant memory variables will have been previously declared. This
means that these are the only outside variables that can be accessed inside a procedure (disregarding the
setProperty command, which can alter any memory location).

2We also store the declarations because AWL does not have a nested block structure
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3.3.4 Literal Functions

We have three kinds of literals in AWL; integer literals, boolean literals and direction literals. Since the
literals are only syntactic representations, we need a way to define the meaning of a literal.

We define the function A/ which, for any integer literal, returns the corresponding numeric value.
N : IntLit - Z

So N [4] = 4 where 4 is an integer literal and 4 is the numeric value 4 and so on.

For boolean literals we define the function B.
B: BoolLit — Bool

where B [true] = # and B[false] = ff . So true is a syntactic representation and # is the value. The same
applies to false and ff.

Last, we have direction literals for which we define the function D.
D: DirLit — Dir

The specific definition of D is shown in the table below.

DirLit Dir
left A
right m
up [
down dd
center @

3.3.5 Other Functions

To make our semantic rules as simple as possible, we define different functions that we use when building
the rules.

Our variable environment contained the element next, which was a pointer to the next free storage
location. However we have to update next manually, and for that we need a function. We define the
function new.

new: (LocULoc x Z — Loc)

and more specific

new (1) =1+ 1 and new (l,2) =1+ 2

Another function which is used is the ran function. This function takes a natural number greater than
zero and returns a value in the range 0 to the incoming number minus one. The formal description of
this function is as follows.

ran: Z—2Z

Finally we need to define two functions, which will help us determine the base storage location of a
specific team and a specific ant. AWL has a well defined storage structure, which means that calculations
are needed to reach these base locations. We define the two functions team Loc and antLoc.
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teamLoc: Z — Z
antLoc: ZXZ —7Z

We define the precise definition of teamLoc to be
teamLoc(zteam ) = FIRSTTEAM + ztcam - TEAMSIZE
and the precise definition of antLoc to be

antLoc(zteam , Zant) = teamLoc(zteam ) + zant - ANTSIZE

3.4 Transition Systems

In this section we will define the transition systems of our operational semantics. We will define one
transition system per syntactical category (only categories with a semantic value). For each system, we
will define the configurations, the transition relation, and the end configurations.

Each transition system is defined by a 3-tuple:
(F7 *>7 T)

where T is the configurations (states) of the transition system, and T is the end configurations. — is the
transition relation, which defines how to get from one configuration to another.

The transition relation for a given transition system will be defined by creating a semantical rule for
every syntactical construct.

As a last note before going through the different syntactical categories, we define a semantical rule
[Expression] that acts as a synonym for the three different kinds of expressions in AWL. This means that
whenever we write

envp, envy .sto - exp —regp U

it covers the following;:

envp, envy, sto - ae —>4e 2
envp, envy, sto - be —p. b
envp, envy, sto - de —g4. d

3.4.1 Arithmetic Expressions

The transition system for arithmetic expressions should evaluate arithmetic expressions to their values,
which are numbers. So we define the transition system (I'a mgpr, —>qe, TAEzpr), Where I'Aggpr = AExpr U Z
and TAExpr = 7.

Transitions are on the form envp, envy, sto b ae — 4, 2.
We define —,, by the semantical rules in table 3.4.

The rule [ae-add] shows that the syntactic construct ae; + aey will evaluate to the number z, if ae;
evaluates to the number z1, and ae, evaluates to number z; where z = 2y +25. Subtraction, multiplication
and division follow the same pattern.

An arithmetic expression can be a single integer literal. In that case we use the rule [ae-lit], which states
that the integer literal n will evaluate to the number z if A'[n] = 2. N was the function which given an
integer literal returned the corresponding number. This rule is an axiom, since it has no premise, and
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[ae-add]
envp, envy, sto - ae; —qc 21 envp, envy, sto - aes —ae 22 where 2 =
envp, envy, sto - ae;+aes —dqe 2
[ae-sub]
envy, envy, sto - aer —qe 21 €nvp, envy, sto - aes —qe 22 where z —
envy, envy, sto - ae1 —aes —qe 2
[ae-mult]
envyp, envy, sto - ae1 —ae 21 envp, envy, sto k- aes —ae 22 here 2
W =
envp, envy, sto - aerxaes —qe 2
[ae-div]
envp, envy , sto - ae; —ae 21 €NVp, envy, Sto - aea —ge 22
ps ENVV , ae ps CRUV» ac where z =

envp, envy , sto - ae1/aes —qe 2

21 + 22

21 — 29

21

w
=

e
V)

- 29

Table 3.4: Semantics for arithmetic calculations

[ae-par]
envy, envy, sto - ae —qe 21
envp, envy , sto - (ae) —qe 21

[ae-lit]
envp, envy,sto - n —qe 2 if N[n] =z

[ae-var]
envp, envy , sto - & —qe 2 if envy (z) = (integer,l) and sto (I) = z

[ae-array]
envp, envy , sto - zlae] —qe 2 where envp, envy, sto b ae —qe 2’
and if envy (z) = (integer,l, 2') and

[ae-rulecall]

(Pp, envi, [next — new (1)]) = p,, env{;

envp F (P4, envl, [nest — new ()], sto) —»p, (envi,, sto’)
envp + <Dv,envi’/,sto’> —py (envi, sto”)

envp F (D, envy, sto") —p, (envd,, sto3)

envp,envd [return — 1] F (S, sto®) — sto?

envy, sto - r(Pa) —ae 2

where | = envy (next) and z = sto? (envSy (return))

and if envp (r) = (S, Pr,env,, Dy, Dy, integer)

z=-sto(l+2")and 2"’ <2’ and 2" >0
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[ae-getProperty]
envp, envy , sto - getProperty(ae) —qc 2
where envy , sto - ae —qe z1and 2z = sto (21)

Table 3.6: GetProperty for arithmetic expressions

[ae-common-var]
envp, envy, sto F cmem & —qe 21
where envy (x) = (integer, z2) and z; = sto (COMMONBASE + z2)

[ae-team-var]

envp, envy, sto - tmemx —4e 21

where envy (z) = (integer, z2) and

21 = sto (teamLoc (sto (CURRENTTEAM)) + TEAMALLOC + 22)

[ae-private-var]

envp, envy, sto - pmem x —qe 21

where envy (z) = (integer, z2) and

21 = sto (antLoc (sto (CURRENTTEAM) , sto (CURRENTANT)) + ANTALLOC + 22)

Table 3.7: Memory variables for ae

would therefore be a leaf if we constructed a derivation tree of an AWL program, which included this
construct. The rules [ae-var| and [ae-array]| are also axioms.

Rule [ae-var] states that a variable x evaluates to the number z, if the variable is bound to storage location
[ in the variable environment and [ is bound to z in the storage. The rules for arrays and rule calls are a
little more complicated, so we will describe them more thoroughly.

To evaluate the arithmetic expression z[ae], we first need to evaluate ae. Then we look up z in the
variable environment, which returns the array type, the base storage location and the size of the array.
Since we don’t want to reference storage outside the boundaries of our array, we check that the index
is greater than or equal to zero and smaller than or equal to the size of the array minus one (indexing
starts at zero). If this is the case z[ae] evaluates to the number z. Note that if the type of the array isn’t

integer, then this rule will not apply to the expression.

Only rules which have a return type can be expressions, so the rule we are calling is bound to a specific
type. Like our semantic rule for arrays, [ae-rulecall] will only apply, if this rule returns an integer. If this is
the case, we lookup the rule in the procedure environment env, (r) which returns all the information about
the rule needed to execute it (S, P, envy,, Dy, Dainteger). First we execute the parameter declarations
(if it has any), so each parameters get allocated a storage location. We then use the updated variable
environment and storage when executing the local variable and array declarations. We also allocate a
location for the return value. With all this done, we execute the commands of the rule, which hopefully
will put a arithmetic value in the location allocated for the return value. The rule then evaluates to the

return value.

In table 3.6 we use getProperty(ae) to retrieve a value from the storage. The expression takes another
arithmetic expression to look up a specific location in the storage. This gives the programmer access to
the entire memory.

In table 3.7 we show how to get the value from a ant memory variable. We find the value of a common
memory variable by first using the function envy (), which will return a type (in this case integer) and a
number z5, which is the relative address of z. Since the common memory variables have the base address
COMMONBASE, we add 22 to the base. We apply sto and get that z = sto (COMMONBASE + z;).

The principle is the same for [ae-team-var| and [ae-private-var| except that we are using a different base
value. The base values are determined using the functions teamLoc and antLoc defined in this chapter.
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[ae-random)]
envp, envy , sto - random(ae) —qe 2
where envp, envy, sto - ae —3q¢ 2’ and 2z = ran(z')

Table 3.8: Random command

[be-equals-ae-1] [be-equals-ae-2]
envy, envy, sto k- aer —qe 21 envp, envy, sto - aer —qe 21
envy, envy , sto - aes —qe 22 envyp, envy, sto - aes —ge 22
envy, envy, sto - ae; == aeay —p, t envp, envy, sto - aer == aea —p ff
where 21 = 29 where 21 # 29
[pe-not-equals-ae-1] [pe-not-equals-ae-2]
envy, envy, sto - aer —qe 21 envy, envy, sto - aer —qe 21
envy, envy, sto - aes —qe 22 envy, envy, sto - aea —qe 22
envy, envy, sto k- aer! = aes —pe t envy, envy, sto k- aer! = aes —pe ff
where z1 # 22 where 21 = 29

Table 3.9: Boolean expressions for arithmetic equality

The random command in table 3.8 takes an ae expression and returns a random value z. This value is
found by first having ae evaluated to a value z’ and then applying this value to random function ran.
ran(z') returns a value z where 0 < z < 2'.

3.4.2 Boolean Expressions

Boolean expressions are expressions, which evaluate to truth/boolean values (ff or #). So the transition
system for BExpr should evaluate a boolean expression to a boolean value b. We define the system
(I'BEzpr, —be, TBEzpr), Where the configurations I'grgpr = BEzpr U {#, ff} and the end configurations
Trwpr = {tt, ff}. Transitions are on the form enw,, envy, sto - be — b.

We define —, by the semantical rules below. The rules are divided into smaller groups to maintain a
good overview.

The rules in table 3.9 define how we determine if an arithmetic expression is or is not equal to another
arithmetic expression. The rules [be-equals-ae-1] and [be-equals-ae-2] show that if we want to check
whether ae; and aes are equal to each other, we first evaluate the two expressions to the numbers z; and
z9. If these numbers are equal (in a mathematical sense), then the construct ae; == aes evaluates to t
- otherwise it evaluates to ff.

In table 3.10 we perform relational arithmetics on two arithmetic expressions, ae; and aes. In [be-lower-
than-1] and [be-lower-than-2] the two expressions are evaluated down to two values, z; and z,. What
happens next is that if z; < 23, we can apply the rule [be-lower-than-1] and the rule will yield a .
Otherwise we can apply the other be-lower-than rule [be-lower-than-2] and the value yielded is a ff. The
other three pairs of rules are very similar to [be-lower-than| pair in their construct, and will also yield
either # or ff.
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[be-greater-than-1] [be-greater-than-2]
envy, envy, sto k- aer —qe 21 envy, envy, sto k- aer —qe 21
envy, envy, sto - aes —qe 22 envy, envy, sto - eas —qe 22
envy, envy, sto - ae; > aex —pe tt envp, envy, sto - aer > aea —p ff
where 21 > 2o where 21 < 22
[be-lower-than-1] [be-lower-than-2]
envy, envy, sto k- aer —qe 21 envy, envy, sto k- aer —qe 21
envy, envy, sto - aes —qe 22 envy, envy, sto - aes —qe 22
envy, envy, sto k- ae; < aex —pe tt envp, envy, sto - aer < aez —p ff
where 21 < 2o where 21 > 22
[pe-greater-than-or-equals-1] [pe-greater-than-or-equals-2]
envy, envy, sto - aer —qe 21 envy, envy, sto - ae1 —qe 21
envy, envy, sto - aea —qe 22 envp, envy, sto - aes —qe 22
envy, envy, sto k- aer => aex —pe t envp, envy, sto - aer => aea —pe ff
where 21 > 22 where 21 < 22
[be-less-than-or-equals-1] [be-less-than-or-equals-2]
envy, envy, sto - aer —qe 21 envy, envy, sto - ae1 —qe 21
envy, envy, sto - aea —qe 22 envy, envy, sto - aes —qe 22
envy, envy, sto k- aer =< aea —>pe t envp, envy, sto k- aer =< aea —pe ff
where 21 < 22 where 21 > 2o

Table 3.10: Semantics for greater and lower-than constructs

[be-and-1]
envp, envy, sto - ber —pe t
envp, envy, sto - bea —pe t
envy, envy,stotber and bex —p. tt

[pe-and-2]
envp, envy, sto F be; —pe ff
envp, envy, sto - ber and beas —p. ff
where i € {1,2}

[be-or-1]
envp, envy, sto - ber —pe ff
envp, envy, sto - bea —p. ff
envp, envy, sto - ber  or bes —p. ff

[be-or-2]
envp, envy, sto - be; —p
envp, envy, sto - ber or bes —pe
where ¢ € {1,2}

Table 3.11: Semantics for ’and’ and ’or’ constructs

The semantical rules in table 3.11 takes two boolean expressions and compare them and, depending on
the rule, return a # or a ff value. In [be-and-1] we say that given the environments envp, envy and a
store sto, both the boolean expressions be; and bes will evaluate to #, and thus yield a #. On the other
hand, in [be-and-2] we state that if just one of the two expressions does not yield a # when evaluated,
then the rule will yield an ff.

The rule [be-and-2] is actually two rules put into one by the use of i, where i is the set of values {1, 2}.
This means that either be; or bes will be evaluated to ff. Which one is of no consequence for the end
result which would, in any case, be ff.

What happens in the [be-or| pair is just the opposite. If either of the two boolean expressions evaluate
to #, then the rule will yield a #.

When a boolean literal bl is encountered, we can apply [be-lit], found in table 3.12. This applies the
function B[bl] and gets a b in return. b is either # or ff. The description of this can be found in section
3.3.4.
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[be-lit] [be-parenthesis]
envp, envy, sto - bl —pe b envy, envy, sto - be —p. b
if B[bl] =b envp, envy , sto = (be) —vpe b
[be-not-1] [be-not-2]
envy, envy, sto - be —, t envp, envy, sto - be —p. ff
envp, envy, sto Flbe —p. ff envp, envy, sto Flbe —p, t

Table 3.12: Semantics for boolean literals, parentheses and negations

[be-var]
envp, envy, sto - & —pe b if envy (z) =1 and sto(l) = b

[be-array]

envp, envy, sto - x[ae] —q4e b where envp,envy, sto - ae —qe 2"
and if envy (z) = (boolean,l,z') and b = sto (I + 2")’
and 2" < 2’ and 2" >0

[be-rulecall]

(Pr, env}, [next — new (1)]) —p,, envi,

envp b (Pa, envy, [next — new (1)], sto) —p, (env, sto’)
envp F <Dv,env}3{,5to’> —py (envi,sto”)

envp b (Dy,envy, sto”) —p, (envy,,sto

envp, envy, [return s 1] - (S, sto®) — sto?

envy,sto b r(Pa) —pe b

where | = envy (newst) and b = sto* (env®y (return))

and if envg (r) = (S, Pr, envl,, Dy, D4, integer)

Table 3.13: Semantics for variable, array and rule calls

What happens in [be-parenthesis] is that the parenthesis are removed and the boolean expression be; is
evaluated to a b. The two 'not’ rules [be-not-1] and [be-not-2] are very similar. They take a boolean
expression be, evaluate it to a b and then reverse the result, so that # becomes ff and vice versa.

Assuming an environment envy and a store sto we can, in the rule [be-var| in table 3.13, find the boolean
b of a variable z, if the variable z is bound to the storage location | (envy (x) = 1) and [ is bound to b in
the storage (sto(I) =b) .

The other two rules in table 3.13 are similar to the ones in table 3.5.

In tables 3.14 and 3.15 rules resembling those in table 3.9 are defined. What makes them different is the
types of expressions that are compared. In [be-equals(be)-1] and [be-equals(be)-2] we have two boolean
expressions be; and bey. These will — given an instance of the variable environment envy, the procedure
environment envp and an instance of the store sto — evaluate to b; and bs. by and by are then compared
and the result is returned. In [be-not-equals(be)-1] and [be-not-equals(be)-2] the same happens, except
that the result is negated.

Table 3.16 is identical to 3.6, except that it evaluates to a boolean value. The same applies to table 3.17
which shows the semantic rules of accessing boolean ant memory variables.

3.4.3 Direction Expressions

Directional expressions resemble boolean expressions in that they can only result in a finite amount of
values. These values are (a,@,r,w,dl). The transition system is defined as (I'Dgwpr; —de, IDEzpr),
where the configurations I'pgzpr = DEzpr U {cc,ll, rr,uu, dd} , and the end configuration Tpggpr is the
set {a, U, rr,w,d}. We define our transitions to have the form envp,envy, sto - de — d, which means
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[be-equals(be)-1] [be-equals(be)-2]
envy, envy, sto = ber —pe b1 envy, envy, sto = ber —pe b1
envy, envy, sto - bea —p. bo envy, envy, sto - bea —p ba
envy, envy, sto k- bey == bes —p t envy, envy, sto F ber == bea —pe ff
where b1 = b2 where b1 75 b2
[be-not-equals(be)-1] [pe-not-equals(be)-2]
envy, envy, sto - ber —pe b1 envy, envy, sto = ber —pe b1
envp, envy, sto - bea —pe bo envp, envy, sto - bea —pe bo
envp, envy, sto k- ber! = bea —p. tt envp, envy , sto - ber! = bes ff
where b1 75 b2 where b1 = b2

Table 3.14: Semantics for equality of boolean expressions

[be-equals(de)-1] [be-equals(de)-2]
envy, envy, sto - der — 4. di envy, envy, sto - der — 4. di
envy, envy, sto - dea — 4. do envy, envy, sto - des — . do
envy, envy, sto - der == dea —pe envp, envy, sto - der == dea —pe ff
where dl = dQ where dl 75 dQ
[be-not-equals(de)-1] [be-not-equals(de)-2]
envp, envy, sto - der — 4. di envy, envy, sto - der — 4. di
envy, envy, sto - aes — 4. da envy, envy , sto - aes =4, do
envp, envy, sto k- de1! = dex —pe tt envp, envy, sto - de1! = dea —pe ff
where d1 # d2 where di = do

Table 3.15: Semantics for equality of direction expressions

[be-getProperty]
envp, envy , sto - getProperty(ae) —qe b
where envp,envy, sto - ae —qe z and b = sto (z)

Table 3.16: getProperty for boolean expression

[be-common-var]
envy, envy, sto - cmem x —qe b
where (integer,z) = envy (z) and b = sto (COMMONBASE + 2)

[pe-team-var]|

envy, envy, sto - tmemx —4c b

where (integer, z) = envy (z) and

b = sto (teamLoc (sto (CURRENTTEAM)) + TEAMALLOC + z)

[be-private-var]

envy, envy, sto - pmemx —ge b
where (integer, z) = envy (z) and
b = sto (antLoc (sto (CURRENTTEAM), sto (CURRENTANT)) + ANTALLOC + z)

Table 3.17: Memory variables for boolean expressions
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[de-lit] |de-parenthesis]
envp,envy, stot dl —4. d envp,envy, sto - de —q4. d
where B[dl] = d envp,envy, sto+ (de) =4 d

[de-rulecall]

(Pr, env}, [next — new (1)]) = p, envi,

envp = (P4, envy, [nest — new (1)], sto) —p, (envi,, sto’)
envp + <Dv,env§.,5to’> —py (envi,,sto”)

envp - (Da,envy, sty —p, (envy,, sto?)

envp,envd [return — I F (S, sto®) — sto?

envy,sto - r(Pa) —ge d

where | = envy (newt) and d = sto? (envSy (return))

and if envg (r) = (S, Pr,env,, Dy, Dy, direction)

Table 3.18: Semantics for literals, parenthesis and rule calls

[de-getProperty]

envy , sto - getProperty(ae) — 4. d
where envy, sto - ae —qe 21
d = sto(z1)

Table 3.20: getproperty for direction expression

that a direction expression will give a d given a variable environment envy, a procedure environment
env, and a store sto.

In the rules below we will be giving the semantic rules for direction expressions —4. . Since all the
semantic rules for this transition system are almost identical to those of the already defined systems, they
will stand uncommented.

[de-var]

envp,envy, sto x —g4. d if envy (x) = (direction,l) and stol = d
[de-array]

envp,envy, sto - x[ae] —4¢ d where envp, envy, sto - ae —q4e 2"’

and if envy (z) = (direction,l,2’) and d = sto (I + 2"")
and 2" < 2’ and 2" >0

Table 3.19: Semantics for [de-var| and [de-array]

3.4.4 Variable Declarations

We define the transition system for DecVar to the 3-tuple (I'pDecvar, = Dys TDecvar)- The configu-
rations I'pecver are defined as (DecVar x Envy X Store) U Envy x Store, and the end configuration
Tpecvar = Envy x Store.

The transition relation is on the following form

envp F (Dy,envy,sto)y = py (env’v, sto’)

35



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL

[de-common-var]
envp,envy, sto - cmemz — 4, d
where envy (z) = (integer,z) and d = sto (COMMONBASE + 2z)

[de-team-var]

envp,envy,sto- tmemz — g4, d

where envy (z) = (integer,, z) and

d = sto (teamLoc (sto (CURRENTTEAM)) + TEAMALLOC + z)

[de-private-var]

envp,envy, sto - pmemz — 4. d

where envy (z) = (integer, z) and

d = sto (antLoc (sto (CURRENTTEAM) , sto (CURRENTANT)) + ANTALLOC + z)

Table 3.21: memory variables for direction

and is defined by the semantic rules below. Note that normal variables in AWL must by declared with a
value. This is the reason that the transitions alter both the variable environment and the store.

[Dv-variable declaration]

envp = (Dy, envy [z + (type,1)] [next — new (1)], sto[l — v]) —p, (env},sto’)

envp b (var z : type = exp; Dy, envy,sto) —p, (env},,sto’)

where envp, envy, sto b exp —eqzp v and | = envy (next)

[Dv-variable-declaration-empty]

envp F (g,envy, sto) —p,, (envy, sto)

Table 3.22: Variable declaration

Table 3.22 shows that the declaration of a variable results in

e the variable name is bound to the next free storage location, and

e that storage location is bound to the value of the variable.

The pointer to the next free location next is updated to point on the next free address. We use the function
new to accomplish this. We define the empty declaration rule to end a list of variable declarations.

3.4.5 Array Declarations

For the transition system (I'pecArrays = D4 TDecArray) We have the following configurations
I'bDecArray = (DecArray x Envy x Store) U Envy X Store
and the following end configurations
Tpecvar = Envy x Store
This is similar to that of variable declarations. The transition relation for this category is on the form
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envp = (Dy4, envy, sto) —p, (env),, sto')

The transition results in a changed variable environment env{, and a changed store sto', since arrays
must be declared with a value The transition relation is defined by the semantic rules below.

[Da-array-declaration]

envp b (D4, envy [z — (type, 1, 2)|[next — new (I, z))], sto[l; — v]) -p, (env},,sto’)

envp F (array z[n] :type=exp; D, envy, sto) —p , (em}b, sto’)
where
envp,envy, stoF exp —ezp v and envp,envy, sto - n —4e 2 and
1 € [0..z — 1] and | = envy (next) and z > 0

[Da-array-declaration-empty]

envp F (e,envy, sto) —p , (envy, sto)

Table 3.23: Array declaration

In table 3.23 we show how an array declaration is applied in our semantics. The declaration of an array
results in

e the array name z is bound the the first storage location of the array, and

e cach storage location /; in the array are bound to the applied value v.

We have the empty rule to end a list of array declarations.

3.4.6 Rule Declarations

The transition system for rule declarations is define as (I'pecRute; = Dps T DecRule), Where I'pecpuie = (DecRule x Envp )
and TDecRule = ETL’UP.

So we have that a configuration is a procedure environment follow by more declarations, or just a pro-
cedure environment. The end configuration is when all rules have been declared, and thus we have only
the updated procedure environment.

The transition relation is on the form envy F (Dg, envp) —p, env'p, and is defined by the semantic
rules below.

[Dr-rule-without-return]

envy F (Dg,envplr — (S, Pr,envy, Dy, D4)]) =pg env’p

envy F (ruler(Pg) {Dy,D4S} Dg,envp) —py envp

[Dr-rule-with-return]

envy - (Dg,envp[r = (S, Pr,envy, Dv, Da,type)]) =p, envp

envy F (ruler(Pp) :type {Dyv,Da,S} Dg,envp) —p, env)p
[Dr-rule-empty]

envy,sto b (e,envp) = p, envp

Table 3.24: Rule declarations
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Table 3.24 shows that each rule declaration will bind the rule name to its formal parameters, its declara-
tions and its commands. For rules with a return type the return type is also stored. Since we have static
variable bindings, we also store the variable environment as it looks at the time of the rule declaration.
The empty rule declaration is defined to end a list of rule declarations.

When a rule is called (described in the transition system of S), we can fetch these stored values, and
apply them to the computation as needed.

3.4.7 Turn and Ant Type Declarations

The transition system for DecTurn ((DecTurn X Envp)U Envp, — pr, Envp) and the transition system
for DecAT (DecAntType x Envp U Envp, —p,,, Envp) resembles that of DecRule, and the definition of
their transition relation is very similar.

Turn declarations are on the form envy F (Dr, envp) = p, env’'p and = pr is defined in table 3.25. We
see that the only difference from rule declarations is that turns can have no return type.

[Dt-turn]
envy + (Dp,envp(t — (S, Pp,envy, Dy, Da)]) = p, envp

envy b (turnt(Pp) {Dy DaS} Dr,envp) —p, envp

[Dt-turn-empty]

envy + (g,envp) = p, envp

Table 3.25: Turn declaration

Ant type declarations are on the similar form envy F (Drgaym, envp) = p,, (, envp), and —p,, is defined
in table 3.26. Ant types can not take any parameters or return any value.

[Dat-anttype-declaration]
envy F (Dar,envp [at — (S,envy, Dy DA)]) =p, . (envh)

envy F (anttype at{ Dy DaS}Dar,envp) =p, (em}})

Table 3.26: Ant type declaration

3.4.8 Common Memory Declarations

The transition system (I'pecprc;, = Dyes Ipecmc) is defined by the following configurations.
I'pecric = (DecMC x Envy X Store) U (Envy x Store)

So a configuration in this transition system can either be an updated variable environment and store,
where we still have declarations to perform. Or all variables have been declared, and we have the updated
variable environment and store.

We therefore have the end configurations defined as:

Tpecmic = Envy X Store
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The transition relation for —p,,.is on the form
envp b (Dyc, envy, sto) —p,,. (env},, sto’)

and it is defined by the semantic rules of table 3.27.

[Dmc-commonl]
envp - (Dyc, envy [z — (type, z)] [next — new(l)], sto[l = v][ COMMONDECLS s z + 1])
— Dy (envl,, sto’)

envp - (common var z : type = exp; Dy, envy, sto) — Do (,env’v,sto’)
where envp,envy,sto - exp — v and envy (next) =1 and z = sto(COMMONDECLS)

[Dmc-common-empty]

envp F (e,envy, sto) = p,,. (envy, sto)

Table 3.27: Common memory

Common variables are very different from normal variables, both in the way they are declared and stored,
and in the way they are references after declaration. As shown in figure 3.1 we have a storage location
containing the number of common variable declarations made (COMMONDECLS). We increment this
number by one every time a common variable is declared. Furthermore we store the value of the number,
together with the type of variable, in the variable environment. This enables us to reference common
variables by making the calculation sto(COMMONBASE + z), where z is the index of the given variable.

We update the storage sto with the value of the variable, and moves the pointer next to the next free
location.

3.4.9 Team Memory Declarations

The transition system (I'pecmrT; = Dyes Thecm) is defined by the configurations.
I'pecir = (DecMT x Envy x Store) U (Envy X Store)
and the end configurations
TpecrT = Envy X Store

So a team memory declaration will result in an updated variable environment and an updated storage.

The transition relation for —p,,,is on the form
envp = (Dyr, envy, sto) = pyq (env’v, sto’)

and is defined by the semantic rules in table 3.28.

A team memory variable is declared without assigning a value to the variable. The semantic rule does
however update the storage, since it increments the number of team variables declared by one (the number
is found in the storage location TEAMDECLS). As with common variables, the variable name is bound
the value of this number, and the variable type in the variable environment.
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[Dmt-team]
envp b (Dyr, envy [z — (type, 2)], sto TEAMDECLS — z + 1]) — (env},, sto’)
envp + (teambrainvar z : type; Dy, envy, sto) — (, env’V, sto’)
where and z = sto(TEAMDECLS)

[Dmt-team-empty]
envp F (e,envy, sto) —p,,. (envy,sto)

Table 3.28: Team memory declaration

3.4.10 Private Memory Declarations

The transition system (I'pecmp, = Dyp, IDecmp) is defined by the configurations I'pecyrp = (DecMP x Envy X% Store) U (Envy
and the end configurations Tpecpp = Envy X Store. So we have that a private variable declaration up-
dates the variable environment and the storages.

The transition relation for —p,,, is on the form

envp - (Dyp, envy, sto) —p,,, (env},, sto’)

and is defined by the semantic rules in table 3.29. The semantic rules are very similar to those of team
variable declarations, and will stand uncommented.

[Dmp-private]
envp F (Dyr,envy [z — (2, type)], stol PRIVATEDECLS — z + 1]) — (env},, sto)
envp + (private var z : type; Dy p,envy, sto) — (, em}Q/, sto’)
where z = sto( PRIVATEDECLS)

[Dmt-private-empty]

envp F (¢, envy, sto) =p,,, (envy, sto)

Table 3.29: Private memory declaration

3.4.11 Commands

Where declarations can alter both the environments and storage of AWL, commands can only alter the
storage - e.g. assigning a new value to a variable. We therefore define the transition system

(Com x Store U Store, —g, Store)

Transitions are on the form envp,envy b (S, sto) — sto’, since we need to know about the bindings of
procedures and variables to execute a command correctly.

The transition rules for —g are defined in the semantic rules below.
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[S-while-true]
envp,envy t (S, sto) —g sto”
envp,envy b (while(be){S}, sto"") —g sto’

envp,envy t (while(be){S}, sto) —g sto’
where envp,envy, sto bk be —pe tt

[S-while-false]
envp,envy b (while(be){S}, sto) —s sto
where envp, envy, sto b be —pe ff

Table 3.30: While command

Table 3.30 shows the semantics of a while command. If the condition of the command is true, then we
execute the body, and apply the same while command on the updated storage. So the while command is
defined recursively. If the condition is false, then there are no changes to the storage.

[S-if-true]
envp,envy F (Si, sto) —g sto’
envp,envy b (if(be){S1}else{S2}, sto) —g sto’
where envp,envy, sto - be —pe tt

[S-if-false]
envp,envy b (S, sto) —g sto
envp,envy b (if(be){S1}else{S2}, sto) —g sto’
where envp,envy b be —pe ff

Table 3.31: If-Else command

[S-assign]
envp,envy b (z = exp, sto) —g sto[l — v]

where envp, envy,sto b exp —eqzp v and envy (z) =1

[S-comp]
envp,envy b (S1,sto) —g sto”
envp,envy F (S2, sto’) —g sto

envp,envy F (S1 Sa, sto) —g sto’

Table 3.32: Assign and Comp command

The semantic rules for the if-else command are defined in table 3.31. Again there are the two possibilities
that the condition is either true or false. If the condition is true then the body of if is executed, otherwise
the body of else is executed. The semantic rule for an assign command shows that to update the value
of a variable we first lookup the storage location, and then bind the new value to this location. The
rule [S-comp] shows that to execute consecutive commands, we first execute the first command, and then
execute the next command on the updated storage.
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[S-assign-array]
envp,envy b (z[ae] = exp, sto) =g sto[ljpe — V]
where envp,envy, sto - ae —qe 21 and envy (z) = (type,l, z2) and
lioe =1+ 21 and envp,envy, sto - exp —ezp v and
z1 >0 and z < 22

Table 3.33: Array assign command

Table 3.33 shows how to assign a new value to an element in an array. We first evaluate the arithmetic
expression to the index of the desired element, and lookup the base address of the array. We then add
these two values together and lookup the location in the storage. To make sure that we do not access
storage outside the array allocations, we check that the given index i between zero and the length of the
array (minus one).

[S-common memory assign]
envp,envy F (cmem x = exp, sto) —g sto[l — v]
where (type, z) = envy (z) and | = COMMONBASE + z

[S-team memory assign]
envp,envy b (tmem z = exp, sto) —g sto[l — v]
where (z,type) = envy (z) and
l = teamLoc (sto(CURRENTTEAM)) + TEAMALLOC + z

[S-private memory assign]
envp,envy t (p x = exp, sto) —g sto[l — v]
where (z1,type) = envy (z) and
I = antLoc (sto (CURRENTTEAM) ,sto (CURRENTANT)) + ANTALLOC + z

Table 3.34: Memory assign commands

[S-rule-call]
(Pr, env}, [next — new (1)]) — env},
envp = (P4, env}, [next — new (1)], sto) — (envd,, sto')
envp = (Dy,envd,, sto') —p, (enviy,sto”)
envp = (D4, envy,, sto'") —p, (envi, sto®)
envp,env?/ F <S, sto3> —g sto?
envp,envy - (r(Pa);, sto) —g sto?
where | = envy (next) and envp (r) = (S,PF, env’V,DV,DA)

[S-turn-call]
(Pr, env}, [next — new (1)]) — envf,
envp = (P4, envl, [nest — new (1)], sto) — (envd,, sto’)
envp + (Dy, envd ,sto’> —Dy (env4v,sto”)
envp = (Da,envy, sto”) = p, (envy, sto®)
envp,envé F <S, sto3> —g sto
envp,envy - (endturn t(Py);, sto) —s sto?
where | = envy (next) and envp (t) = (S,Pp, env,, Dy, DA)

Table 3.35: Rule and turn call commands
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[S-setProperty]
envp,envy t (setProperty(ae, exp);, sto) —g sto[l — v]
where envp, envy, sto - ae —4e z and envp,envy, sto - exp —ezp v and

=2z

Table 3.37: Set property command

[S-process]

envp, envy = (Dy,env'y [next — new (1)], sto) —p,, (env”y,sto')

F
F (Da,env"y,sto') —p,, (env"'y, sto')
111

envp, envy
envp,envy b (S, sto” [l1 — z1][la — 22]) =g sto

envp,envy + (process(aei,aes,at);, sto) —g sto’"’

where (env},, Dy, DaS) = envp (at), and
envp,envy, sto - ae; —rqe 21 and envp,envy, sto - aea —qe 22
Iy = sto(CURRENTTEAM) and ls = sto (CURRENTANT)

Table 3.38: Process command

When assigning a value to a ant memory variable as done in table 3.34, we first lookup the variable’s
relative address. We then lookup the base address of the memory type (e.g. for common variables we
have COMMONBASE). We can now update the storage at the base address added to the relative
address with the new value. Calling a rule as a command is similar to calling a rule as an expression -
except that there is no storage allocated for a return value.

[S-return]
envp,envy F (return exp;, sto) —g sto[l — v]

where | = envy (return) and envp, envy, sto - exp — v

[S-skip]
envp,envy + (skip;, sto) —g sto

Table 3.36: Return and skip command

In table 3.36 we show the semantic rules for the return and the skip command. The skip command
(obviously) does absolutely nothing. The return command evaluates its expression parameters, and
stores the value in the location denoted by envy (return), which have been updated by the rule call that
ultimately lead to this command. The setProperty command updates a given location directly in the
storage. This is of course a powerful command, but also dangerous, since it makes it very easy for the
programmer to make fatal mistakes.

The process command takes a team number, a ant number and an ant-type name. Basically this is just a
procedure call to the given ant type, except that we update the storage locations CURRENTTEAM and
CURRENTANT we the applied values. This achieves that the ant programmer do not need to worry
about his team number, or which ant he is currently processing. The ant type can then be programmed
as if there were just one ant.
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3.4.12 Formal and Actual Parameters

The formal parameters of a procedure is basically variable declarations. We therefore define the transition
system

(FParm X Envy U Envv,ﬁpF,Envv)

for formal parameter declarations, which shows that formal parameters only change the variable environ-
ment, since they do not assign a value to the parameter.

We also define the transition system
(AParm x Envy x Store U Envy x Store,—p,, Envy X Store)

for actual parameter assignments. Actual parameters primarily change the storage applying values to
already declared formal parameters. We do however move the pointer next in the variable environment.

The transition relation for formal parameters — p, is on the form (Pr, envy) — p, envy, and are defined
by table 3.39. The semantic rules shows that each parameter will get its name bound to a storage location
in the variable environment.

[Pf-formal parameters]

(Pr,envy [z — ] [next — new (I)]) — envy,

(var x : type; Pr,envy) —s env},
where | = envy (next)

[Pf-formal parameters-empty]

(e, envy ) =g envy

Table 3.39: Formal parameters

The semantic rules defining the —p, are on the form envp F (P4, envy, sto) — (envy,, sto’) and defined
in table 3.40.

[Pa-actual parameters]

envp F (P4, envy [next — new (1)], sto[l — v]) — (env},, sto’)

envp E (exp; P4, envy, sto) —p, (env),, sto')
where | = envy (next) and envp,envy, sto - exp —ezp v

[Pa-actual parameters-empty]

envp F (e,envy, sto) —p, (envy, sto)

Table 3.40: Actual parameters

3.4.13 Team Declaration

When a team is declared in AWL, we allocate space for the following data:
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e The primary team attributes - team number, next ant (currently active ant count) and the x , y
coordinates of the team base.

e A copy of the declared teambrain memory variables.

e The number of ants (found in the location M AX ANTS) and for each ant a copy of the declared
private memory variables.

The primary attributes of a team can be assigned values at team declaration. The team number is just a
incrementing number (stored at TEAMCOUNT), and the x , y coordinates are chosen randomly. Since
there are no active ants on a newly declared team, the value of the next ant storage location should be
7€ero.

So a team declaration will alter the variable environment and the storage. We define the transition system

(FDecTeama > Drpam> TDecTeam)

with the configurations
I'DecTeam = DecTeam x Envy X Store U Envy X Store
and the end configurations
TpecTeam = Envy X Store

Transitions will be on the form envp F (Drgam, envy, st0) = py..,, (envy, sto') and the transition re-
lation is defined in table 3.41. When a team is declared we lookup how many teams that have already
been declared. We store this number as the team number at location [. The storage location denoted
by I,,; is the next free storage location (where the next team can be stored). The calculation of [,,; takes
the base of the team being declared, and adds the total amount of locations allocated to each team. [,,
is the storage location storing the currently active ant count, which we set to zero. Finally we store the
random constructed coordinates, and increment the number of declared teams by 1.

[Dteam-createTeam]

envp F< Drpam,

envy [z — (integer,l)] [next — lny],

sto [l — teamno)| [lna — 0] [lz — z]|[ly — y] [TEAMCOUNT s (z + 1)]
" Dream (env’v,sto')

envp - (createTeam(z);Drpan, envy, sto) = Dppgap, (€nvi,, sto’)

where

I = envy (next) ,

lna = new(l) , lz = new(l,2), ly = new(l, 3),

teamno = sto (TEAMCOUNT) ,

lnt = new(l, TEAMSIZE),

z = ran (sto (WORLDSIZE)) and y = ran (sto (WORLDSIZE))

[Dteam-createTeam-empty]

envp F (e, envy, sto) — (envy, sto)

Table 3.41: team declaration
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3.4.14 World

The definition of a world is a complete AWL program. All other syntactical constructs are derivated from
the world construct, and thus it is what ties an AWL program together. The result of a world construct
is that storage has changed, since all declarations are out of scope, when we step out of the defined world.

The transition system defining World is ( World x Store, —.,, Store). Transitions are on the form (w, sto) —,,
(sto') , which illustrates the point that only storage changes. The transition relation —,, is defined in
table 3.42.

[w-world]

envp b (Do, envy [next — 1], sto[WORLDSIZE + 2] [MAXANTS — 23] [MAXFOOD + 2z3]) = pe,, (env, sto')

envp b (Drarenv, sto'y —p,,, (env, sto®)  envp b (Dpyenv, sto?) —p,,, (env,sto?)

Dp,envp) = p, envp envv F (DT em)P> —Dr em)P

(

(
envp <DTEAM,ean sto > > Drgam (env%,,sto4)

envi: F (

(

Dyr, em)P> —Dar (envp)
envy F <Dv,envv sto > — Dy (envv,sto5) envy F <DA,em)V sto > —Da (em)?/,stoﬁ)

envy, envl - (S, sto”) =g sto®

envv

(world(nlngng){DCMDTMDPMDR, DTDATmain{DTEAMDvDAS}}, StO) —w St08

where
eNvp, ENVY, Sto - N1 =4 21, envp, envy, sto - ny =4 22, envy, envy, sto F ng —+4. 23 and
| = FOODBASE + sto(MAXFOOD) - 2

Table 3.42: The world declaration

The semantic rule [w-world] is large, but very straight-forward. A world definition is made up by the
following elements

e The world parameters (size, ants and food)
e Common, teambrain and private ant memory declarations

Rule declarations

Ant type declarations

Team declarations

Main section

So to compute a world, we first store the world parameters in the predefined storage locations WORLDSIZE,
MAXANTS and MAXFOOD. Doing this we also move next to point at the next free location after the
storage allocated to food. We then run through all declarations, and finally we execute the commands in
the main section of the program.
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3.5 Standard Environment

In our language we provide methods for getting a value directly from memory, and a method for setting
a value directly to memory.

getProperty(ae) setProperty(ae,v)

Using these methods requires the programmer to have a knowledge of how the data is stored, and that
is of course a problem. However, it is also to great a task to define syntactical constructs and semantical
rules for every desirable operation in AWL. This would simply result in a very large grammar, and some
very complicated semantic rules. The solution to this is to introduce a standard environment, where high
level functions could be implemented using the basic operations of AWL. An example of a function, that
could very well be in a standard environment for AWL could be getWorldSize(), which would return the
size of the world.

[getWorldSize]
procedure getWorldSize(){return getproperty(0); }

Another procedure that might be helpful when creating a ant world could be walk(var d : direction),
which would move an ant in a given direction, and perhaps also check to see if the moving ant could
capture a base or kill an enemy ant.

It is clear that the usability of AWL would be greatly increased with a standard environment, however
at its current state, there is no standard environment in AWL. To introduce one we should expand the
procedure environment to contain normal procedure and functions, which should only be accessible from
the main section and rules (ants should not have access).

An example of a another standard environment is the Java.lang package in JAVA, which implements
many useful methods using the basic operations of JAVA.

3.6 Derivation Tree

In this section we will show how we can use the semantics described in the previous sections to describe
an execution of a given program. We will give examples of how a derivation tree for a while command
looks like, and one for an equals expression. The derivation trees shows the different stages a statement
goes through before ending up in the end state.

While derivation tree.

(2)envp,envy F (y =y — 1, sto) =g sto[l — (z1)] (3)vp,envy F (while(v > 0){y =y — 1; }, sto’) —g sto’
(envp,envy F (while(v > 0){y =y — 1; }, sto) —g sto’
(1)=Where envp, envy, sto - (y > 0) — t, | = envy (y), and
envp,envy,sto-y — 1
(2)=Where envp,envy,stob (y —1) = z1
(3)=Where envp, envy,stoF (y > 0) — ff, and where
envp,envy,sto-y — 0

Here is a derivation tree for while. We see that in the first loop that y > 0 evaluates to true, and therefore
we need to execute the commands found within the while body. The command to be executed is an assign
command that subtracts 1 from the variable y. This results in y being equal to 0. with the updated
storage we call while again. This time y > 0 will evaluate to false, and the while loop will terminate. If
y had been equals e.g. 10, the tree would have been much more comprehensive and we would have had
to loop through the while statement a lot more times.

Equals arithmetic expression derivation tree.
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envp,envy,sto- 8 — z3 envp,envy,stok- 5 — 24
envp,envy, sto - 9 —qe 21 envp,envy, sto- 85 — (23 - 24)
envp,envy,sto- 9 ==8x5 =, ff
Where z1 # (23 - 24)

We here show the derivation tree for an equals expression. We first evaluate the leftmost argument
to z;, we then proceed to evaluate the rightmost argument. This argument is a composite arithmetic
expression. Because of this we evaluate this first and get (23 - 24). we now compare these and get ff
because z1 # (23 - z4). Logically the more complex the expression is the higher the derivation tree will
span. In this example we have a numeral and a multiplication expression as the logical parts of the
boolean expression. The reason that these are the logical expressions is that this is so described in our

grammar?

3.7 Summary

In this chapter we have defined the operational semantics of AWL. To do so, we have defined syntactical
categories and specified an abstract grammar, on which we have based our transition systems. We have
defined the environments and storage that AWL uses, and specified functions to aid us in describing the
semantics. The semantics of all syntactical constructs have been defined in the transition relation of the
transition systems.

Looking back at this chapter, a reasonable question would be if it wouldn’t be a lot easier just to describe
the semantics with words. Clearly it would make the semantics easier to understand when first reading
them. However the semantics are constructed for implementation of the programming language, and it
is very likely that semantics specified only with words would cause confusion and misunderstandings. By
using a known notation and defining exactly how each syntactical construct changes the environment, we
avoid confusion.

In the next chapter we will define another operational semantics for the abstract machine AWLAM.

3The BNF described in chapter 2
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Chapter 4

AWLAM

In this chapter we will define the abstract machine AWLAM, which is shorthand notation for “Ant War
Language Abstract Machine”. We will define how the abstract machine is designed and works, and also
which instructions it provides. The instructions will be described by an abstract syntax, and furthermore
we will give an operational semantics for it. We will use the abbreviation AM and the composite word
“abstract machine” interchangeably. When we refer to AM it will be the AWLAM unless we have specified
otherwise. Also we will use the normal terms associated with stack operations, i.e. push and pop, when
a value is added to the top of a stack, or when a value is removed from the top of a stack.

As such the abstract machine should be seen as an “abstract AM”. It means that the AM defined in
this chapter does not necessarily resemble how it actually will be implemented, but may be seen as an
intermediate result. The reason for this is that we wish to bridge the semantic gap in a more gentle
manner, and it makes the process of proving our result a lot nicer. The actual difference is not very big,
and will be explained in the next section.

4.1 Definition of AWLAM

We will now give a definition of the AM. The AM is made up from a set of registers, a code store, a
data store, a code stack, and an evaluation stack. The registers point to various areas of the code and
data store during the execution of an AM program. The evaluation stack is used for direction, boolean
and arithmetic calculations, the code stack for keeping track of which instructions have to be executed
and the two stores will, as their names imply, be used for storage of program data and the program code
itself. Figure 4.1 on page 51 shows how the memory and the registers are laid out.

There are nine registers which are: “Current team” (CT), “Current team memory” (CT M), “Current ant”

(CA), “Current ant memory” (CAM), “Start team” (ST, “Start data” (SD), “Next” (NEXT), “Local

scope” (LS), “Common memory” (CM) and “Program counter” (PC). The CT register refers to the
start address of the current team, which means the team that is in scope at the moment, and the C' A
register refers to the start address of the current ant, on the current team. The CTM and CAM are
used for referring to the ant-memory locations of the current team and the current ant. The effect is that
you always know which ant is currently being executed, and which team it belongs to, and therefore you
know what part of the memory should be in scope. The LS register refers to the value of local scope,
and keeps track of what scope we are currently in, and the CM is used to keep track of the common
memory. The PC register is used to refer to the current instruction on the code store. It is though, not
used as one might expect. As such the actual execution of code is controlled with the code stack, and
the program counter is used to keep track of what is currently on the code stack. The location of these
registers at the start of the program is illustrated in figure 4.1

The code store will contain the program, which is going to be executed, expressed in abstract machine
code. The data store contains all the data which is stored during the program’s life cycle. When we refer
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to locations in the stores, we will do so relatively from the start of the store. It means that the first line
of a store will be addressed “0”, and the line after “1”. The same thing holds for the registers.

The evaluation stack is used for calculations during the execution of a program, and can contain integers,
booleans and directions. The code stack will contain the code which is going to be executed next. At
the start of a program it will be a copy of the code store, but as the program executes, instructions will
be popped from the stack. If at some point in the code a jump is made to another part of the code, the
content, of the stack will be popped. The code at the place to where we jumped, and through to the end
of the program, will be pushed onto the stack. Again instructions will be popped from the stack as they
are executed. This will continue until the program terminates or another jump is reached.

As such, the code stack might not be the best solution to control execution of code, and may be seen as
an abstraction. It would be more reasonable to implement a “program counter” register, and use it to
point at the next instruction to be executed from the code store. The pros and cons for using a program
counter is that it boosts execution speed and efficiency, but adds to the complexity of the machine. There
is only a minor difference in the behavior between using a register solution and using the stack solution.
As implied earlier we will use the register solution.

For the sake of simplicity we will assume that all variables and instructions use one memory location each
in the memory of the AM. The theory and notation in this chapter is based on the book !.

Figure 4.1 shows how the memory is organized, and where the registers are pointing at the start of a
program. The layout is the same as that of AWL, the only difference being that in AWLAM we have
registers.

4.1.1 Notation and Definitions

Before we go on, it might be a good idea to introduce some definitions, and to say a little about the
notation used in the next section. Configurations of the AM are on the form:

(r, ¢, e, m) € Reg x Code x Stack x Memory
r is the function mapping registers to numbers defined by:
r € Reg = Register — 7Z
and the set of registers is:
g € Register = {PC, CT, CTM, CA, CAM, ST, SD, NEXT, LS}
code is the sequence of code to be executed and consists of
code € Code

a set of AM instructions, which is defined by the abstract syntax in table 4.1. k is the number of total
instructions in the code. The code stack is defined by:

¢ € cStack = (code)

and e is the evaluation stack defined by:

1[2, chapter 3]
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0 world size Team-0-no

1 max ant number Team - 0 - nextant

2 number of foods Team - 0 - Base X

3| number of declared teams Team -0 - Base Y

4 current team Team -0- teamvar -0

5 current ant Team -0- teamvar -1

6 number of common decl. Team -0- teamvar -j

7 number of team decl. Ant - 0 - X Coord

8 number of private decl. Ant-0- Y Coord

9 food - 0 -X Ant - 0 - private value - 0
10 food-0-Y Ant - 0 - private value -1
11 food - 1 -X Ant - 0 - private value - k
12 food-1-Y Ant - 1 - X Coord

13 food - |-X Ant - 1- Y Coord

14 food - |-Y Ant - 1 - private value - 0
15 common value - 0 Ant - 1 - private value -1
16 common value -1 Ant - 1 - private value -k
17 common value -i Ant - i - X Coord

Ant-i- Y Coord
Ant - i - private value - 0

|

SD = Start data Ant - i - private value -1
CM = Common memory Ant - i - private value -k
SD = Start data Team-1-no

ST = Start team Team - 1 - nextant
CT™M = Current team memory Team - 1 - Base X

CA = Current ant Team-1-Base Y
CAM = Current ant memory Team -1- teamvar -0

Team -1- teamvar -1
Team -1- teamvar -j

Figure 4.1: Memory of awlam.
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e € eStack = (Z UBool U Dir)"
where
b € Bool ={t, ff} and d € Dir = {ll, rr, uu, dd, cc}.
m is the memory formally defined by:
m € Memory = (Z U Bool U Dir)".

The transition relation for AWLAM is on the form:

where the triangle specifies the transition itself, and means that it is done in one step. Finally z € Z.

When we write (r, ADD : TRUE : ¢, z; : 20 : e, m), it means that the instructions on the code stack is
the ADD command, and that the one coming right after is the TRUE command, i.e. when the ADD
command has been executed, the next instruction on the stack will be TRUE. The ¢ means that there
might be more code on stack, but we will only specify the code that we need at this certain time.

When there is a colon between two elements it serves as a separator. In the example mentioned before
two elements are on the stack, namely z; and 25 which are used as operands for the ADD command.

Furthermore, we shall use the notation r(g) to denote the value of register g. When we refer to it in
connection with the evaluation stack, we will use the register name to mean the actual value of the
register. E.g. when we write next : e we actually mean r(next) : e.

With these definitions, we are ready to take a look at the operational semantics.

4.1.2 Instruction Set of AWLAM

The instruction set of AWLAM is seen in table 4.1. It is expressed in BNF and tells us that code can be
either a single instruction, a sequence of instructions, or no instruction at all.

code = €|inst: code
inst = ADD|SUB|MULT |DIV |PUSH n|POP | TRUE | FALSE
|  LEFT|RIGHT |UP|DOWN | CENTER |EQ | LE | NEG
| AND | OR |JUMP n | JUMPF n | LOADS [¢] | LOAD n [g]
| SAVES [¢] | SAVE n [¢g] | LABEL n | NEXT
| CALL n;,ng | CALLAT n | RETURN | SAVEREG ¢
| NOOP |SWAP | RAN | DUP

Table 4.1: Abstract syntax for AWLAM

The instructions themselves will be explained in the next section, where we also explain the operational
semantics for AWLAM.
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4.2 Operational Semantics of AWLAM

In table 4.2 through 4.8 we show the operational semantics for AWLAM. We will start out by explaining
the arithmetic rules in table 4.2.

[ADD-AM]

(r,ADD : ¢,z : 25 : e, sto) > (r,c,(z; + 22) : e, sto)
[SUB-AM]

(r,SUB :¢,z; : 22 : e,sto) > (r,c,(z — z2) : e, sto)
[MULT-AM]

(r, MULT : ¢, 2; : 20 : e,sto) >{r,c,(z; - 22) : e, sto)
[DIV-AM]

(r,DIV :c¢,2; : 22 : €, sto) > <7”, c, (%) : e,st0>

Table 4.2: Transition rules for arithmetic instructions.

The top of the code stack contains the ADD command, and two values z; and z, are found on the top
of the evaluation stack. After the instruction has been executed the sum of z; and zowill lie on top of
the stack. The notation says that (21 + 22) is on the evaluation stack which should be read as the actual
result of this operation. The rest of the arithmetic operations work in a similar way. In the table 4.3 we
see the instructions for pushing and popping a value to the evaluation stack.

[PUSH n-AM]

(r,PUSHn : c, e, sto) > {(r,c,N'[n] : e, sto)
[POP-AM]

(r,POP : c,v: e, sto)>(r,c,e,sto)
[TRUE-AM]

(r, TRUE : ¢, e, sto) > (r, ¢, tt : e, sto)
[FALSE-AM]

(r,FALSE : ¢, e, sto) > (r, ¢, ff : e, sto)
[LEFT-AM]

(r,LEFT : c,e,sto)>(r,c,ll : e, sto)
[RIGHT-AM]

(r,RIGHT : ¢, e, sto) > (r, c,rr : e, sto)
[UP-AM]

(r,UP : ¢, e,sto) > (r,c,uu: e, sto)
[DOWN-AM]

(r,DOWN ' : ¢, e, sto) > (r,c,dd : e, sto)
[CENTER-AM]

(r, CENTER: ¢, ¢, sto) > (r, ¢, cc : e, sto)

Table 4.3: Instructions for pushing values onto the stack.
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The first instruction PUSHn pushes a numeral n onto the stack, or actually it is the value of the numeral
n denoted by A'[n] that is pushed. POP works in the opposite way, which means that it removes a value
from the evaluation stack. The rest works in a way similar to PUSH n, except that they push the value
of the instruction name, which means a # for TRUE, ff for FALSE, [ for LEFT, etc. The table 4.4
shows instructions for boolean calculations.

[EQ1-AM]

(r,EQ:c,z1: 22 :e,8to)>(r,c,(z1 = 22) : e, sto)
[EQ2-AM]

(r,EQ:c,bs:bs:e,sto)y>(r,c,(by = bg): e, sto)
[EQ3-AM]

(r,EQ:c,d; : ds: e, sto)>(r,c,(d = dg): e,sto)
[LE-AM]

(r,LE : ¢,z; : 2o : e,sto) > (r,c, (21 < 22) : e, sto)
[NEG-AM]

(r,NEG: ¢, b: e, sto)>(r,c,—b: e, sto)
[AND-AM]

(r,AND : ¢, b; : bs : e,sto) > {r,c,(bs Abz) : e, sto)
[OR-AM]

(r,OR :¢,by : bg :e,sto)>(r,c,(b; V bg) : e, sto)

Table 4.4: Instructions for boolean operations.

The EQ instructions will pop two operands from the stack, and evaluate whether they are equal or not,
and then push the boolean result onto the stack. The reason that there are three different rules is that
we have three simple types, namely arithmetic, boolean and direction. The three are, except for their
type, the alike. The LE instruction works in the same way as EQ, with the only difference that it is the
“less than or equal” operation. The NEG (boolean not) gives the opposite value of a boolean value on
the evaluation stack, pops the original value and pushes the new value.

AND and OR both works the same way. With two boolean values placed on the stack, they pop the
two values, and use the boolean operator on them. They then push the result back onto the evaluation
stack. The result depends on the values on the evaluation stack, and is calculated using normal boolean
algebra rules. The part in table 4.5 is the instructions used for jumping to some specific part of the code.
In the table & is the length of det total code.
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[JUMP n-AM]

<r,JUMP n: c,e,sto > > where z = label (N'n])
< r[PC — z], code[z] : code[z + 1], ..., code[k], e, sto >

[JUMPF1-AM]

<r,JUMPF n:c,b: e, sto>n> if b= ff and

< r[PC v 2], code[z] : code[z + 1], ..., code[k], e, sto > where z = label (N'[n])
[JUMPF2-AM]

<r,JUMPFn:c,b:e,sto>p><r,c,e,sto> ifo=1t
[LABEL-AM]

<r,LABELn:c,e, sto >> < r,c, e, sto >

Table 4.5: Instructions for jumping in the code.

JUMP n is used to jump to a specific label in the code. What happens when a jump is made, is that all
code on the code stack will be popped, and the code from the place to where we jumped, through to the
end of the program, will be pushed onto the stack. JUMPF n does the same thing, except that it pops
a boolean value from the stack first and evaluates it. If it evaluates to false, the same thing will happen
as for the JUMP n, and if it evaluates to true the instruction just after the JUMPF n will be executed.
The LABEL instruction is just to specify a label in the code, and if one is encountered, the instruction
after the label will be executed next. The instructions in table 4.6 are used for accessing the registers.

[LOADS [g]-AM]

(r,LOADS [g] : ¢, 21 : e, sto) > (r,c, 22 : €, sto) where zo = m[r(g) + z1]
[SAVES [g]-AM]

(r,SAVES [g] : ¢,z : v : e, sto) > (r, ¢, e, sto [z +> v]) where z = m[r(g) + 2]
[LOAD n [g]-AM]

(r,LOAD n[g]: c,e,sto) > (r,c,v : e, sto) where v = m[r (g) + Nn]]
[SAVE n [g]-AM]

(r,SAVE n[g]: c,v: e, sto) > (r, c, e, sto[z — v]) where z = r (g) + N[n]

[SAVEREG [g]-AM]

(r,SAVEREG [g] : ¢,z : e,sto) > (r[g — 2], ¢, e, sto)
[NEXT-AM]

(r,NEXT : ¢, e,sto) > (r[NEXT — NEXT + 1], c, e, sto)

Table 4.6: Instructions for loading and saving values to registers.

LOADS [g] is used for loading a value from a memory location. The memory location is popped from
the evaluation stack, and afterwards the retrieved value is pushed onto the evaluation stack. SAVES [g]
is used for saving the second value lying on the evaluation stack to the memory location lying on top of
the stack. LOAD n [g] is used for loading a memory location n which is relative to a register address g
and then pushing it on top of the evaluation stack. So if n = 3, then it is the 3rd memory location after
register g’s memory location. SAVE n [g] works in a similar way, only difference is that it pops a value
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from the stack and saves it to a memory location n relative to the register g. The NEXT instruction is
used for increasing the memory location, to which the register NEXT points, by one. SAVEREG [g]
has the register g point at the location value that is on top of the stack

[CALL-AM]

(r,CALL n;,ng : c,vg,...,0p, : e, sto) >

(r[LS — NEXT + 1], JUMP n; : ¢,vs,...,0pn, : PC+ 1 : NEXT : LS : e, sto)
where n = label (N'[n1])

[CALLAT-AM]

(r,CALLAT n: c, e, sto) >

(r[LS — NEXT][CT — z3][CTM — 2;][CA — 2z5][CAM — 24],

JUMP n:c,PC+1:NEXT : LS : e,sto)

where

21 = sto(4) (current team) , zo = sto(5) (current ant)

23 = ST + 21 - (4 + sto(7) + (2 + sto(8)) - sto(1)) (base address of current team)
z4 = 23 + 4 (base address of current team memory)

z5 = z4 + sto(7) + (2 + sto(8)) - z2 (base address of current ant)

26 = 25 + 2 (base address of current ant private memory)

[RETURN-AM]
(r, RETURN : ¢,2; : 22 : 23 : e, sto) >
(r[PC +— z;][NEXT — 22][LS — 23], code[z;] : code|z; + 1], ..., code[k], e, sto)

Table 4.7: Instructions calling code, and returning values.

CALL ny,n- is used for calling a specific label in the code. It takes two parameters, ny and ns. The
first parameter is the label that you want to jump to, and the second one is the number of arguments
you have on the stack. The reason you specify this in the call, is that it allows you to know the exact
number of parameters on the stack. It works as follows: You have ny, (which is v;to v,) arguments on
the stack, and then use the CALL ny,ns instruction. The result of this is that the LS register is set to
point at the next free memory location, the PC' register is set to point to PC + 1 and a JUMP n; is
placed on the code stack. The PC register, the old values of register LS, and register NEXT are pushed
onto the evaluation stack so that after the subroutine call has finished, it is possible to return to the state
that existed before we entered the subroutine call. The PC register is saved so we know what is the next
instruction after we return from the subroutine. The LS register is saved so we will know what scope we
were in before, and the N EXT register is saved so we will know what was the next free memory location
before the call. This has the effect that we actually will overwrite all local scope data from the subroutine
after it has finished, which makes perfectly sense, since we do not want to save it. The return address
is saved so we know which instruction is the next to be executed right after the subroutine returns, i.e
what code to put on the code stack. One thing to notice is that the stack has been rearranged so that
the arguments for the subroutine is now on top of the stack.

The CALLAT n instruction is a bit more complicated since it updates a lot more registers. It takes one
parameter, which is the number of the anttype that should be called. It uses two values from storage,
the current team number and the current ant number, which are used for updating registers. It updates
NEXT,CT,CTM, CA and the CAM register, so that the right ant will be edited inside the ant type.
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It pushes the same values on both the evaluation stack and the code stack as the CALLny, noinstruction,
so that it will know where to return to.

RETURN goes back to the state before a call was made. Is has the value of the return address (PC)
together with the original NEXT and LS registers on the evaluation stack, (z1,z2and z3). After the
return the NEXT and LS registers will point at the values at which they did before. If there is any
return value (v) it will be placed in the location 0 relative to register LS. Also the code stack will be
popped for all code, and the code from the return address (PC), lying on the evaluation stack, and on,
will be pushed on the code stack.

[NOOP-AM]

(r,NOOP : ¢, e, sto) > (r, c, e, sto)

[SWAP-AM]

(r,SWAP : c,v; :vg : e,sto) >(r,c,vzg : v; : e, sto)

[RAN-AM]

(r,RAN : ¢,z : e,sto) >(r, c, 22 : €, sto) where 0 < 25 < 21
[DUP-AM]

(r,DUP : c,v: e, sto)>(r,c,v: v: e,sto)

Table 4.8: Various instructions

The NOOP command does nothing. It is an abbreviation for “No Operation”. SWAP takes two values
from the top of the stack, and swaps them so that the one on top will be switched with the one lying
right after it. RAN returns a value between 0 and z; — 1, where z; lies on top of the evaluation stack,
and pushes it onto the stack. The DUP instruction takes a value from the stack and pushes it back to
the stack twice.

4.3 Program Example

Table 4.9 shows a small AWLAM program.

1. PUSH 1 5. EQ 9. SUB

2. LABEL n, 6. NEG 10. JUMP n,
3. DUP 7. JUMPF n, 11. LABEL n,
4. PUSHY 8. PUSH ! 12. POP

Where n; = newLabel,, and ng = newLabel,,

Table 4.9: Example AWLAM instruction sequence.

In the AWLAM program in table 4.9, the value 1 is pushed onto the stack. This value is then duplicated
so that we have 2 of the same value in the two top places of the stack. 0 is then pushed on top of the
stack. We now proceeds to compare the two top values of the stack(0 and 1), the truth value of this is
pushed on top of the stack. We then pop this value, negate it, and push the new truth value. After this
if the value is ff the program jumps to the label ny. Because the value is # the program simply continues
to the next instruction. Now 1 is pushed on top of the stack, and then pop the two topmost values off
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the stack, subtracts the first value from the second value, and push this new value onto the stack. The
program now encounters JUMP n;. This means that the next instruction is the one directly following
LABELn;which is DUP. The program now goes through the above described phases until JUMPF n,
is encountered. Because the value on top of the stack is ff, the program now jumps to the instruction
directly following LABEL ny. This instruction is POP which as the name implies pops the topmost
value of the stack. After this there are no more instructions and the program is complete

To illustrate how the transitions of AWLAM progress, we will make a computation sequence of our
small example. Initially all the program code is on the code stack, and the computation starts with an
empty evaluation stack. Since it would take up to much space to write the entire code stack at each
configuration, we just write inst : ¢ to illustrate, that after the topmost instruction the rest of the stack
follows. Also each instruction is prefixed with it’s line number to make the computation sequence more
understandable.

Registers Code stack Evaluation stack Storage

(r, 1.PUSH2:¢c, €, sto)
> (r 2.LABELn; :¢, 1, sto)
> (r 3.DUP : ¢, 1, sto)
> (r 4. PUSHO : c, 1:1, sto)
> (r 5. EQ :c, 0:1:1, sto)
> (r 6. NEG : c, i1, sto)
> (r 7.JUMPFny :c, t:1 sto)
> (r 8. PUSH1 : ¢, 1, sto)
> (r 9.SUB :¢, 1:1, sto)
> (r 10.JUMP ny : ¢, O, sto)
> (r 3.DUP :c, 0, sto)
> (r 4.PUSHO :c, 0:0, sto)
> (r 5.EQ :¢, 0:0:0 sto)
> (r 6. NEG : ¢, it : 0, sto)
> (r 7. JUMPFny :c, [ff:0, sto)
> (r 12. POP : ¢, 0, sto)
> (r €, €, sto)

Table 4.10: Computation sequence of the program in table 4.9

The computation in table 4.10 is an example of a terminating computation, because it is obviously
not possible to make any transitions from the final configuration, since there are no more instructions.
Furthermore the computation sequence ends in a terminal configuration, which means that the code
component is empty.

If we appended the instruction ADD to the sequence, then the sequence would still terminate, but it
would end in a stuck configuration, since ADD needs two numbers on the stack to make a transition. In
contrast to a terminating computation is a computation which does not terminate. Such a computation
is called a looping computation sequence. We will need these concepts when proving the correctness of
the translation from AWL to AWLAM, so we will make a formal definition.

4.4 Summary

In this chapter we have given a definition of the AM. A central question when designing an AM is at what
level should it be. Should it be as low level as possible, or should it be allowed to put in some abstract
mechanisms, which will make it more high level. We have tried to keep the AM as low level as possible
but have included a few mechanisms of abstraction. A central mechanism that we have added is relative
addressing. We refer to memory locations relatively from registers which makes it a lot easier to work
with the AM. Also we use a code stack to cycle through the code, and a program counter when executing
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a jump. Using a code stack is not the most efficient way to design an AM, but it gives a model which
is easier to illustrate, and the difference from making a code stack versus for example using a program
counter register only, is not really that big. The main issue here is that the AM defined at first may not
be the final AM. As such it is possible to master the complexity in a number of steps, whatever seems
reasonable, and the AM defined here should be seen as an intermediate result, and not as a representation
of how the AM will actually be implemented.

Another central concept is how the instruction set is laid out. How many instructions should there be.
Should there be any composite instructions or helping functions to ease the job of translating. We do
have some mechanism helping us, but have tried to limit these.

Since all evaluation is done on a stack, it may be seen as a stack machine. But we also do use registers
to refer memory locations in an easier way, and to keep track of certain values and scope.

With the definition of AWL and the definition of the abstract machine, we are now ready to see how the
translation of AWL code into AM instructions is done. This is the topic of the next chapter.
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Code Generation

In this chapter we will define translation functions which translates AWL to AWLAM. The translation
functions are divided into categories, which are explained as they appear. To create a proper translation,
it has been necessary to make protocols describing how e.g. a procedure is called. It should also be noted
that the translation has not been optimized for performance in any way.

5.1 Protocols

In this section we will in general terms describe what happens when a procedure call and a call to an ant
type is encountered.

When a procedure call is encountered the following happens.

Procedure Call

1. Place the value of [NEXT]on top of the stack

2. Place the value of[LS] on top of the stack.

@

Place the return address on top of the stack

-~

The value of [LS] is set to the value of [NEXT].
5. Place the arguments value on the stack.

6. Give the control to the procedure.
Inside the Procedure

1. Save the arguments on top of the stack.
2. perform any declarations and commands found in the body of the procedure.
3. Place the return value if any in the base of [LS] (0[LS])

4. Pop the return address from the stack and jump to this.
After Exiting the Procedure

1. Pop the topmost value of the stack, and set [LS] to this value.
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2. Pop the topmost value of the stack, and set [NEXT] to this value.

3. If there is a return value, this is found at the base of [NEXT] (O[NEXT))

Before entering a procedure the old state of the program is saved along with where we want the the
return value to be, if any. The procedure then enters the procedure. After declaring the variables found,
and executing the commands that is inside the procedure body, the return address is saved in the base of
[LS], and the return value is popped from the stack, and then jumps to this location. When the program
has left the procedure, [NEXT] and [LS] is restored to its old values.

When a call to an ant type is encountered the following happens

Call an Ant Type

1. Update CT to point to the address space associated with the current team.
2. Update CA to point to the address space associated with the current ant.
3. Place the value of [NEXT]on top of the stack

4. Place the value of[LS] on top of the stack.

5. Place the return address on the stack

6. Jump to the ant type code
Inside Ant Type

1. Save the return address from the top of the stack.

2. Execute the declarations and commands found within the ant type body. Team mem is loaded
relative to CT, and ant mem is loaded relatively to CA.

3. Pop the return address from the stack and jump to this.
After Exiting the Ant Type

1. Pop the topmost value of the stack, and set [LS] to this value.

2. Pop the topmost value of the stack, and set [NEXT] to this value.

Before entering an ant type, the old state of the program is saved The ant type call then enters the ant
type instructions. After executing the instructions, the return value is saved in the base of [LS], and the
return address is popped from the stack, and then jumps to this location. When the program has left
the procedure, [NEXT] and [LS] is restored to its old values.

5.2 Functions

Since we do not have variables in AWLAM we need a method to remember which storage location a
given variable is bound to. We therefore define the function mloc.

mloc : ProcName x Var «— 7
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where the set ProcName is defined as ProcName = RuleName U TurnName U AntTypeName.
We will use the meta variable p to reference elements in ProcName.

We do not have procedures either, so we need a way to remember which label prepends the translation
of a given procedure. For that purpose we define ploc. Note that labels are in fact just natural numbers.

ploc : ProcName — Z

Finally we define the function tloc which maps team variable names to the first storage location allocated
to the given team.

tloc : Var — Loc

Updating the Functions

Instead of updating the functions with the correct values during the actual translation, we will specify
how they can be updated before this process. Doing that will allow us to assume that they are defined
correctly during the translation. Figure 5.1 shows the general idea on how to update mloc and ploc.

During translation we run through the AWL source program. This run-through will be done once before
the actual translation only to map variables, procedures and teams to certain values. We can map each
variable to a relative storage location inside a procedure, and we can map each procedure to the number
it was declared as.

When we encounter a team declaration, it is a simple task of calculating the first storage location that
will be allocated to that team. Similar calculations are described in the operational semantics of AWL.
We can then update tloc with the correct location.

5.3 Code Generation

In this section we will define the translation functions.

5.3.1 Arithmetic Expressions

For the arithmetic expressions we have the total function:
CA : AExpr — (ProcName — Code)

which states that given a arithmetic expression and a procedure name, we will get translated code. We
need the procedure name, so we can determine the relative storage locations of variables.

In the code generation for the arithmetic operations, we have swapped the arguments, so that they will
be evaluated in the correct order. We use mloc to evaluate a variable z as the contents of the storage
location mloc(p, z) relatively to the local scope base LS inside the given procedure p . Evaluating a
variable means pushing it onto the evaluation stack.

When calling a procedure we first evaluate the actual parameters, using the code translation function
CP4[P4a] defined in section 5.3.12. We then insert a CALL instruction, which jumps to the label
mapped in ploc for the given procedure name. According to the defined protocols, we can now fetch the
return value from storage location 0 relatively to the register NEXT.

The instructions cmem, tmem and pmem loads the contents of their mapped storage location relatively
to their base registers CM, CTM and CAM onto the stack.
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world(300,20,50)
{
common var rLeft: integer=5;
team var tL:integer;
private p1[4]:integer;

}

———mloc(memory, rLeft) =0
———mloc(memory, t1) =1
———mloc(memory, pl) =2

ruler(..x ] ploc(r) =0
var rx : integer = 0; mioc(r, rx) =0
array rz[4]: integer = 0; — mloc(r, rz) = 1
var ry : integer = 0; mloc(r, ry) =5
}
turn t(..){ ] ploc(t) = 1
s — loc(t, sx) =0
var sx ; integer = 30; < m
var sy : integer = 0; mloc(t, sy) =1
}
anttype at{ D ploc(at) = 2
var atx : integer = 0; < mloc(at, atx) =0
}
main{ *— ploc(main) = 3
- integer = 0;
var mx : integer = 0;

mloc(main, mx) =0

Figure 5.1: Definition of mloc, ploc and tloc
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CA[n]p = PUSHn
CA[z]p = LOAD~R[LS] where n = mloc (p, )
CA[xz [ae]] p = CAlae] : PUSHn : ADD : LOADS [LS] where n = mloc (p, z)
CAlaei+aea] p = CAlaes] : CAJaei] : ADD
CAlaei—ae2]p = CAlaez] : CAJae] : SUB
CAlaei*aes] p = CAlaez] : CAlae] : MULT
CAlaei/ae2] p = CAlae2] : CAJae1] : DIV
CA[(ae)]p = CAlae]
CA[r (Pa)]p = CPa[Pa]:CALLn;,n2 : LOADO[NEXT] where n; = ploc(p) and

na = parameter count
CA[random(ae)] p CAlae] : RAN
CA[cmemz;]p = LOAD~n [CM] where n = mloc (memory, )
CA[tmemz;]p = LOADn [CTM] where n = mloc (memory, x)
CA[pmem z;]p = LOADn [CAM] where n = mloc (memory, x)
CA[getProperty(ae);]p = CAlae] : LOADS [SD]

Table 5.1: Translation of AExp

5.3.2 Boolean Expressions

For boolean expressions we have the total function:

CB : BExpr — (ProcName — Code)

The translation of boolean expressions are very similar to the translation of arithmetic expression. Since
we only have instructions for the relational operations “less than or equals” (LE) and “equals” (EQ), we
use a combination of these and NEG to implement the other relational operations. Table 5.2 illustrates
the translation of boolean expression.
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CB [true] p = TRUE
CBfalse]p = FALSE
CB[z]p = LOADn[NEXT]

CB[z [ae];]p
CBlae1r == ae2]p
CB[ber == be2]p
CB[der == dea2]p
CBlaei! = aea] p
CB[bei! = bea]p
CB[dei! = de2]p

CAJae] : PUSH n : ADD : LOADS [LS]
CAlaez] : CAfaei] : EQ

CB [bea] : CB[be1] : EQ

CD[des] : CD[dei] : EQ

CAlaez] : CAfaei] : EQ : NEG

CB[bez2] : CB[be1] : EQ : NEG

CD [des] : CD [de1] : EQ : NEG

CBaei>aea] p = CAlaes] : CAJaei] : LE : NEG
CBlaei<aez]p = CAlaez] : CAJae] : EQ : NEG :
CAlaes] : CAlaei] : LE : AND
CB[ae1>=aes] p = CAlaes] :CAJaei] : EQ
CAlaez] : CAfaei] : LE: NEG : AND
CBlaer <= aes]p = CAlae2] : CAJae ] : LE
CB [bejand bes] p = CB[bes] : CB[be1] : AND
CB[beior bea] p = CBJ[bez2] : CB[be1] : OR
CB(be)]p = CB|be]
CB['be] p = CB[be] : NEG
CBlIT‘ (PA)ﬂp = CPA [[PA}] :CALLnl,ng :LOADO[NEXT}
CB[cmem z] p = LOADn [CM)]
CB[tmem z]p = LOADn [CTM]
CB[pmem z]p = LOADnR [CAM]
CB[getProperty(ae)]p = CAlae]: LOADS [SD]

where n = mloc (p, z)
where n = mloc (p, z)

where n1 = ploc(p) , and

na = parameter count
where n = mloc (memory, )
where n = mloc (memory, x)

where n = mloc (memory, )

Table 5.2: Translation of BExp

5.3.3 Direction Expressions

For the direction expressions we have the total function:

CD : DExpr — (ProcName — Code)

The translation of direction expressions is similar to the translation of arithmetic and boolean expressions,

and will stand uncommented. The translation is shown in table 5.3.
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CDy [var z : type = exp; Dy]p = CEJexp] : SAVEO[NEXT]: NEXT :CDy [Dy]

CDy [e]p = NOOP

Table 5.4: Translation of DecVar

CD [center] p = CENTER
CD [up]p = UP
CD [down] p = DOWN
CD [right] p = RIGHT
CD[left]p -~ LEFT
CD[z],p = LOAD~R[LS] where n = mloc (p, z)
CD[(de)]p = (CD][de]
CD[r(Pa)].p = CPA[Pa]:CALLny,n2 : LOADO[NEXT] where n; = ploc(p) , and

no = parameter count
CD[cmemuz;]p = LOADn [CM] where n = mloc (memory, x)
CD[tmemz;]p = LOADn [CTM] where n = mloc (memory, x)
CD[pmemz;]p = LOADn [CAM] where n = mloc (memory, )
CD |z [ae];],p = CAlJae] : PUSHn : ADD : LOADS [LS] where n = mloc (p, z)
CD [getProperty(ae);]p = CAJae]: LOADS [SD]

Table 5.3: Translation of DExp

5.3.4 Variable Declarations

To translate variable declarations we define two function
CDy : DecVar — (ProcName — Code)

As with the semantic rules of a variable declaration, the code translation is recursive. Since we already
have the mapping of each variables relative storage location, we only need to save the value of the variable
in the next free storage location, and then update the NEXT register to point at the next free location.
Table 5.4 defines the function CDy.

5.3.5 Array Declarations

The translation function for array declarations is specified as
CD4 : DecArr — (ProcName — Code)

and defined in table 5.5 . The translated instructions create a looping instruction sequence, which walks
through the storage locations of the array, and assigns the given value. CD 4 is defined recursively.

5.3.6 Ant Type Declarations

We translate ant type declarations using the function
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PUSHn : LABELn; : DUP : PUSH0: EQ : NEG : JUMPF ny :
CE [exp] : SAVE O [NEXT]: NEXT : PUSH 1: SWAP :
SUB : JUMP n; : LABEL ny : POP : CD 4 [D 4]

CDy larray x [n] : type = exp; DAl p

where n1 = newlabel; and ns = newlabels

CD 4 elp = NOOP

Table 5.5: Translation of DecArr

CD 71 [anttype at {Dy DAS}Dar]p JUMP nj : LABEL n; : CDy [Dy] : CD4 [Da] :

CS[S]: RETURN : LABEL n»
where ni = newlabely , na = newlabelzand ploc(p) = n1

CDart [e]lp = NOOP

Table 5.6: Translation of DecAT

CDat : DecAT — (ProcName — Code)

defined in table 5.6. We see that the first instruction in the translated sequence is a JUMP instruction,
which jumps to the end of the sequence. This ensures that the declarations and commands inside the ant
type is not computed during the declaration of the ant type. CD 47 uses the code translation functions
for variable and array declarations to declare local data, and the code translation function for commands
(defined in section 5.3.14) to execute its code. As defined in the protocols in section 5.1 the RETURN
instruction return control to wherever the ant type was called from.

5.3.7 Rule Declarations

The translation of rule declarations is expressed by the function
CDx : DecRule — (ProcName — Code)

defined in table 5.7. The translation is very similar to the translation of ant type declarations, however
since rules can take parameters, we also need to evaluate those. For this purpose we use the translation
functions CPx and CP4 defined in section 5.3.12. We see that the translation of a rule with or without
a return type results in the same sequence of AWLAM instructions.

5.3.8 Turn Declarations

We define the translation function
CDr : DecTurn — (ProcName — Code)

to translate turn declarations. The function is further defined in table 5.8, and is identical to the
translation of rule declarations.
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CDR [ruler (Pr) : type{Dy DaS}Dgr]p JUMP n3 : LABEL n; : CP# [Pr] : CDy [Dy] :

CDA[DA]: CS[S]: RETURN : LABEL n,
where ni = newlabel; , ny = newlabels and ploc(p) = n1

CDg [ruler (Pr) {DyDaS}DRr]p = JUMP ny : LABELn; : CPx [Pr] : CDy [Dy] :
CD4[DA]: CS[S]: RETURN : LABEL n,

where n1 = newlabeli , no = newlabelsand ploc(p) = n1

CDx [€lp = NOOP

Table 5.7: Translation of DecRule

CDr [[turnt(Pp) {DvDAS}DTﬂp JUMP ns : LABELn; : CP£ [[PFﬂ :CDy [[Dvﬂ :
CDA[DA]:CS[S] : RETURN : LABEL n»

where ni = newlabel; , na = newlabelzand ploc(p) = n1

CDr [e]p = NOOP

Table 5.8: Translation of DecTurn

5.3.9 Team Declarations

When a team is declared, we need to update certain storage locations (see the definition of the transitions
system for TeamDec for details). We also need to calculate the next free storage location, which means
jumping over all locations allocated to a team. We can make this calculation at translation time (as
opposed to doing it at runtime), since all the numbers needed in the calculation is known - e.g. the
maximum ant count is programmed as an integer literal, so we can read the number directly. Had it been
an expression the calculation could not have been done at translation time, since we would not know
which number the expression would evaluate to.

To translate the team declarations we have the function
CDrsam : DecTeam — (ProcName — Code)

defined by table 5.9.

5.3.10 Common Memory Declarations

Common memory variables are declared almost identical to normal variables. The only difference is that
besides making the declaration we also update the storage location containing the number of common
declarations made. We have the function

CDumc : DecMC — (ProcName — Code)
which is defined in table 5.10
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CDrgaum [createTeam(z); Drganm]p = LOAD 3 [SD]: PUSH ¢s: SAVES [SD]:

LOAD 0 [SD] : RAN : PUSH 2 : PUSH s : ADD : SAVE [SD] :
LOAD 0 [SD]: RAN : PUSH 3 : PUSH ¢{s : ADD : SAVE [SD] :
LOAD 3 [$D]: PUSH 1 : ADD : SAVE 3 [SD)] :

PUSH n : SAVEREG [NEXT]: CDrram [Drranm]
where ts = tloc(z) and
n = ts + 4 + teambrain declaration count+

(2 + private declaration count) - ant count

CDrganm [€]lp = NOOP

Table 5.9: Translation of DecTeam

CDpme [common var z : type = exp; CDyc]p =  CE[exp] : SAVEO [NEXT]: NEXT
LOAD 6 [SD]: PUSH 1 : ADD : SAVE 6 [SD] : CDaqc [Darc]

where n = mloc (memory, )

CDpnme [€]p = NOOP

Table 5.10: Translation of DecMC

5.3.11 Teambrain and Private Memory Declarations

When declaring a teambrain or a private memory variable there are no assignment included. Since
we have already determined the relative storage location of the variables, we only need to update the
locations dedicated to the number of teambrain and private memory allocations made.

We have the functions
CDm7 : DecMT — (ProcName — Code)
and

CDmp : DecMP — (ProcName — Code)

defined in the tables 5.11 and 5.12.

CD a7 [teambrain var z : type; CDyr]p = LOADT [SD]: PUSH1: ADD :SAVE Y7 [SD]:CDp7 [CDpr]

CDmT [€]lp = NOOP

Table 5.11: Translation of DecMT
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CDpmp [private var z : type; CDyplp = LOADS [SD]: PUSH 1: ADD : SAVES [SD]: CDapp [CDuyrp]p

CDmp [e]p = e

Table 5.12: Translation of DecMP

5.3.12 Formal and Actual Parameters

Together formal and actual parameters declarations perform the function of a variable declaration. The
actual parameters are placed on the stack, and the translation of the formal parameters stores the actual
parameters in the allocated storage locations.
We have the functions

CPz : FParm — (ProcName — Code)
and

CP4 : AParm — (ProcName — Code)

defined in table 5.3.12.

SAVE 0 [NEXT] : NEXT : CPx [Pr]

CPx [var z : type; Pr| p

CPrelp = NOOP
CP.a [ae; Palp = CP4[P4] : CA[ae]
CPalelp = NOOP

Table 5.13: Translation for formal and actual parameters

5.3.13 World

The translation of the world construct is actually the translation of the entire program. All other
translation functions are called from CW expressed as

CW : World — (ProcName — Code)

and defined in table 5.14. We see that we make a calculation at translation time. We need to update
the register NEXT to point at the address following the food allocations. We can make this calculation
now, because we know both the number of dedicated storage locations and the maximum pieces of food
allowed.
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CW [world (n1,n2,n3) {DyvcDyvrDump = PUSHn; : SAVE0[SD]: PUSHn; : SAVE 1[SD]:
DrD7D srmain{DrranDyDaS}p PUSH n3 : SAVE 2 [SD] : PUSH nyc; : SAVEREG [NEXT)
CDpmc [Puc] : COMmT [Pyt : CDmp [Dupl : CDTeam [PrEAM]
CDx [Dr]: €Dy [Dr] : €Dy [Dar] : LABELO :
CDy [Dv] : CDA[DA] : CS[S]

where Npezt = 9+ food count - 2

Table 5.14: Translation for world declaration

5.3.14 Commands

To translate commands we have the function

CW : World — (ProcName — Code)

defined in table 5.16.

The translation of the AWL commands are for the most part straight forward. There are however a
couple of constructs, which need explaining. The translation of process needs to update the storage
location dedicated to the current team and current ant. To do so it evaluates its parameters to the stack,
and then saves the values and calls the given ant type.

The return command is translated to instructions, which saves the parameters at location 0 relatively to
the register LS - as specified in our protocols. The skip command translates to a NOOP (no operation)
instruction, since it changes nothing.
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CS[r(Pa)]p = CPa[Pa]: CALLn,no

where n1 = ploc(r) and na = parameter count

CS [z = exp;]p = CE&[exp] : SAVEn [LS]

where n = mloc(p, x)

CS [z [ae] = exp;] p = C&Jexp] : CAJae]: PUSHn : ADD : SAVES [LS]
where n = mloc (p, z)

CS [endturnt(Pa)]p = CP4[Pa]:CALLn;,no
where ni = ploc(t) and ny = parameter count

CS [process (ae1, aez, at)] p = CAlae1] : SAVE4 [CT] :CA[aes] :
SAVES5 [CA]:: CALLAT n :
where n = ploc(at)

¢S [while(be){S}] p = LABELn, : CB[be] : JUMPF n, :
CS[S] : JUMP n; : LABEL n»

where n1 = newlabeliand no = newlabels

CS [if (be){S1}else{S2}] p = CBjlbe] : JUMPF n; : CS[S1] :
JUMP njy : LABEL n; : CS[S2] : LABEL n»

where n1 = newlabely and ns = newlabels

CS [emem x = exp;]p = CE&Jexp] : SAVEn [CM]

Where n = mloc(memory, x)

CS [tmem z = exp;] p = CE&exp] : SAVEn [CTM]

Where n = mloc(memory, x)

CS [pmem x = exp;]p = CE&exp] : SAVEn [CAM]
Where n = mloc (memory, x)

CS [setProperty(ae,exp);]p = CE[exp] : CAJae] : SAVES [SD]
CS[S1S2]p = CS[S1]:cS[S2]

CS [return exp;] p = CE&Jexp] : SAVEQ [LS]

CS [skip;] p = NOOP:

Table 5.16: Translation of commands

5.4 Summary

We have now defined how to translate an AWL program to a sequence of AWLAM instructions through
a list of translation functions. We have made such functions for each syntactical construct of AWL. The
question that now remains is how to prove that the translation is in fact correct. Fortunately that is the
topic of the next chapter.
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Chapter 6

Provable Correct Implementation

In the last chapter we defined the abstract machine AWLAM, and constructed code generating functions,
which translated AWL commands into a sequence of AWLAM instructions. In this chapter we will show
that the translation is in fact correct, and we will define what correct means in this context. This chapter
will only show a hand-full of proofs - the remaining can be found in Appendix A.

To avoid confusion we will refer to AWLAM as AM.

6.1 Correctness

We define the translation of an AWL program into AM code to be correct if (and only if) the execution of
the AM code on the abstract machine will give the same result as specified by the operational semantics
for AWL.

Since AWL and AM has the same type of storage, yielding the same result means ending up with identical
storage states.

In the following sections we will prove that the translation functions from the previous chapters are
correct. We will divide the proofs into

e proving the correct implementation of declarations,
e proving the correct implementation of expressions and

e proving the correct implementation of commands.

However we first need to describe the techniques, which we will use to make the proof.

6.2 Proof Techniques

We will conduct proofs by the two different proof techniques:

e induction on the shape of derivation trees, and

e induction on the length of computation sequences.
Below follow a short description of each of the two techniques.
1

Induction on the shape of derivation trees

Proofs by induction on the shape of derivation trees are conducted on the following manner.

"2, p. 28]
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e We prove that the property, which we are trying to prove, holds for all simple derivation trees by
showing that it holds for the axioms of the transition system.

e We then prove that the property holds for all composite derivation trees. This is done by assuming
for each semantic rule that the property holds for the premises of the rule, and then proving that
it also holds for the conclusion provided that the side conditions of the rule are satisfied.

Induction on the length of computation sequences 2

Proofs by induction on the length of computation sequences are conducted in the following manner.

e We prove that the property holds for all computation sequences of length 0

e We then prove that the property holds for all other derivation sequences by first assuming that it
holds for all sequences at length most k, and then showing that it then also holds for sequences of
of length k + 1.

6.3 Meaning of Commands

For AWL we define the meaning of commands S as a partial function from Store to Store. *

Sawr : Com — (Store — Store)

which means that for each command S, we have a partial function Sawy, [S] € Store — Store. This
function is defined as

sto' if envy, envp F (S, sto) — sto'

unde fined otherwise

Sawr [S] sto = {

We also define the meaning of a sequence of instructions on AM as a partial function from Store to
Store.

M : Code — (Store — Store)

and more specific

/

sto if (r,c, €, sto) >* (r' ¢, e, sto')

M [c] sto = {

unde fined otherwise

So using these functions, we can determine how AWL commands or AM instructions will change the
storage.

Using the function M we can now also specify the meaning of a command S by translating it into
AM instructions and then executing the instructions on the abstract machine. We define the function
Sam [S]: Com — (Store — Store) by

Sam [S]= (Mo CS)[S] = M(CS[S])

2[2, p. 37]
3[2, p. 31]
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6.4 Notation

Since we do not want to make the proofs of correctness to hard to read, we will not write e.g. env,, envy, sto -
ae —4¢ z when we need to imply that a arithmetic expression evaluates to the number z in the semantics
of AWL. Instead we will just assume that the reader understands that this is the case and use z. We will
of course only do this when there can be no doubt. If we do need to write the complete transition rule,
we will for the most part omit the first part and just write e.g. ae —4, 2.

We will make the following shortcuts:

z where N [n] = z and where env,, envy, sto - ae =4 2
b where env), envy, sto - be = b

d where env), envy, sto - de =4 d

v where env, envy, sto - exp —epp v

This means that if we encounter e.g. the command PUSH n we can write (r, PUSH n, ¢, sto)>(r, €, 2, sto)
without any further explanation.

6.5 Variable Declarations

Before proving the correctness of variable declarations, we must define which properties that must hold.
The intuitive correctness is that the storage states are identical in the two semantics after declaring a
variable. We would also like the register NEXT to point to the same storage location as the pointer
next in the semantics of AWL. We define the following lemma to express this.

Lemma 6.5.1 For all variable declarations we have that
if (Dv, envy, sto) — (envy,, sto') then (r,CDy [Dv] p, e, sto) b* (1, €, €, sto')

where envy, (next) = r'(NEXT)

So each variable must be stored at the same storage location in the two semantics. Also the pointer next
must point to the same location as the register NEXT after declaration.

Proof: We will make the proof by induction on the shape of the derivation tree.

The case: [Dv-variable-declaration-empty]

We assume that (¢, envy, sto) —p,, (envy,sto). Using the translation function we get that CDy [e] p =
NOOP. Using the semantics of NOOP we get that

(r,NOOP,e¢, sto) > (r, €, €, sto)

which completes the proof of this case.

The case: [Dv-variable-declaration]

We assume that (var z:type=exp;Dv, envy, sto) — (envy,, sto’) holds because
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(Dy, envy [z — (type, )] [next s new (1)], sto [l = v]) —py, (env},,sto’)(which is the premise)

because | = envy (nezxt).

Using the code translation function we get that
CDy [var z : type=ezp;Dy] p = CE [exp] : SAVE O0[NEXT]: NEXT : CDy [Dy]p

We can now make the following computation sequence.

(r,CE [ezp] : SAVE 0[NEXT] : NEXT : CDy [Dv]p,e¢, sto) >*
(r',SAVE 0[NEXT] : NEXT :CDy, [Dy] p,v, sto) >
(r'" ,NEXT : CDy [Dv] p,¢,sto” ) >

We see that sto” = [l — v], so it follows that the variables are stored at the correct locations.
Applying the induction hypothesis to the premise we get that
(r",CDy [Dy]p, e, sto”) >* (r', e, ¢, sto’)

which completes the computation which ends in the required state. It follows from the computation
sequence that envy, (next) = r'(NEXT). This completes the proof of lemma A.1.1.

6.6 Array Declarations

We have allready defined a lemma expressing the correctness of variable declarations. The correctness of

array declarations are naturally almost identical. We therefore define the following lemma?.

Lemma 6.6.1 For all array declarations we have that
if (Da, envy, sto) — (envy,, sto') then (r,CDA[Da] p, €, sto) > (1, €, €, sto')

where r(NEXT) = envy (next)

So each array must be stored at the same storage locations in the two semantics. Also the pointer next
must point to the same location as the register NEXT after declaration.

Proof: We will use induction on the shape of the derivation tree to prove lemma A.1.2.

The case: [Da-declaration-empty]

We assume that (e, envy, sto) = p, (envy,sto). Using the translation function we get that CD 4 [e] p = NOOP,
and with the semantics of NOOP we have that

(r,NOOQOP, ¢, sto) > (r, €€, sto)

12, p. 73]
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which completes the proof of this case.

The case: [Da-declaration]

We assume that
(array z[n] :type=ezp; D4, envy, sto) —p, (env},,sto’)
because
(Da, envy [z — (type, I, z)][nezt — new (1, 2))], stolli — v]) = p, (env},, sto’)

where i € [0..z — 1] and | = envy (next) and z > 0.

Using the code translation function we get that

CDAarray z[n] : type = exp Da]p =
PUSH ng : LABELn; : DUP : PUSH 0 : EQ : NEG : JUMPF ny : C€ [exp] : SAVE O[NEXT] :

NEXT : PUSH 1 : SWAP : SUB : JUMP n; : LABEL ny : POP : CDA[D4] p
We can now make the following computation sequence:

PUSH ng : LABELn; : DUP : PUSH 0 : EQ : NEG : JUMPF ng : CE [exp] : SAVE 0[NEXT] o) n7
"\ NEXT:PUSH 1 : SWAP : SUB : JUMP ny : LABEL ns : POP : CD 4 [Da] p 6810

T,

CE&[exp] : SAVE O[NEXT]: NEXT : PUSH 1 : SWAP : to) b+
SUB : JUMP ny : LABEL ng : POP : CD4 [Da] p 16,510

(r', PUSH 1:SWAP :SUB: JUMP n; : LABEL ny : POP :CD4 [Da]p ,e,sto')>*
(r', JUMPn; : LABEL ng : POP:CD4[Dalp €, sto’)p*
(r", CDA[Dalp ¢, sto" )"

(r', € €, sto’)

We get the first part of the computation using the semantics of AM, and we see that sto” = sto[l; — v]
where i € [0.N[n] — 1] as required. We get the last part by applying the induction hypothesis to the
premise. This completes the proof of lemma A.1.2.

6.7 Arithmetic Expressions

Since the proofs of the three expression types in AWL are practically identical, we will only show the
proof of arithmetic expressions - or at least some of it. The proofs of boolean and direction expressions
can be found in Appendix A, as can the remaining part of the proof of arithmetic expressions..

The intuitive correctness of an arithmetic expression is that it evaluates to the correct number. Since we
are using an evaluation stack in AM this means that the correct value of the expression must be pushed
onto the stack. We will define the following lemma to express this.

Lemma 6.7.1 For all arithmetic expression

s ae we have that
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(r,CAlae] ¢, sto) > {r,e, z, sto)

where envp, envy, sto b ae —4. 2.

Furthermore, all intermediate configurations of this computation sequence will have a non-empty evalu-
ating stack.

Proof: The proof of lemma A.3.1 is done by structual induction on ae.

The case: [ae-lit]

Using the code generation function C.A, we have that CA[n]p = PUSH n. From the semantics of AM
we have that

(r,PUSH n,e, sto) > (r', €, z, sto)

and since n — z in the operational semantics for AWL, we have completed the proof for [ae-lit].

The case: [ae-var]

We have that CA[z] p = LOAD n [LS], where LS is the register, which points to the local base address
of the current routine p, and where n = mloc (p,z) (the relative address of z inside p).

Using the semantics of AM we have that
(r,LOAD n [LS], ¢, sto) > (r', €, sto(r (LS) + z) , sto)

In the operational semantics of AWL we have that © — sto (envy ()). Using the definition of LS and
mloc we see that 7(LS) + z = envy (), which completes the proof of this case.

The case: [ae-getProperty]

Using the code translation function we have
CA[getProperty(ae);] = CA[ae] : LOADS [SD]
and we there have the computation sequence

(r,CA[ae] : LOADS [SD] ¢, sto) >*
(r',LOADS [SD], z;, sto) >

(r" e, 22, sto)

To make the first computation we apply the induction hypothesis to ae, and to make the second we use
the semantics of LOADS. We see that zo = sto(z1), and using the rule [ae-getProperty] we see that this
is the required result.

The case: [ae-mult]

We have that
CAlae; - aez] = CAJaes] : CAJaes] : MULT
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Applying the induction hypothesis to ae; and aes results in

(r,CAJaeq], e, sto) >* (r',e, 21, sto) and

(r',CA[aez], €, sto) >* (r' e, 22, sto)
Since we can extend the code base, we have that

(r,CAJaez] : CAlae;] : MULT, g, sto) >* (r,CA[aes] : MULT, 23, sto) >*

(r, MULT, 2 : 22, sto)
We now apply the transition rule for MULT, and get
(r, MULT, 21 : 22, sto) b* (r, €, (21 - 22), sto)

Since aey - aes —rqe (21 - 22) in the semantics of AWL, the proof is complete.

6.8 Commands

In section 6.3 we defined the meaning of commands and instructions. We will use these definitions to
make a theorem that expresses the correctness of the translation of commands. The theorem expresses,
that if a execution of S terminates in a state in the semantics of AWL, then it will also terminate in the
semantics of the abstract machine AM with the resulting states being equal. This also applies the other
way around. The theorem also expresses that if the execution of S from one state loops in one of the
semantics then it will also loop in the other.

Theorem 6.8.1 For every statement S of AWL we have that Sawy, [S] = San [S]°

The theorem is proved in two stages expressed by lemma A.4.2 and lemma A.4.3.

Lemma 6.8.2 For every statement S of AWL and stores sto and sto', we have that
if (S, sto) — sto' then (r,CS[S] €, sto) b* (r', €, €, sto')

If the execution of S from the store sto terminates in the big step semantics for AWL, then the execution
of the translated code from the store sto will also terminate in the semantics for AWLAM and the resulting
stores will be equal.®

Proof: The proof of lemma A.4.2 is completed by induction on the shape of the derivation tree for
(S, sto) — sto’. So we will prove the lemma for each command in AWL.

The case: [s - assign]
We asume that (x = exp, sto) — sto’ where sto’ = sto[l — v] , |l = envy(z) and exp — v.

Using CS we get that

5[2, p. 74]
%2, p. 75]
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CS [z = exp] p = CE [exp] : SAVE n [LS]
where n = mloc(p, z). From the expression lemmas we have
(r, CE[exp] €, sto)>* (' €,v,sto)
and from the semantic rules of AM we get
(', SAVE n [LS], v, sto) > ("', ¢, ¢, sto [(r(LS) + 2]) > v)

Since we have that envy (x) = r(LS) + z using the definition of LS, this completes the proof.

The case: [s - comp|

Using the semantics of AWL we have that (5155, sto) — sto' because (Si, sto) — sto’ and (Ss, sto’) —
sto'. Using CS we get that

CS[S182] = CS[S:]:CS[Se]
We apply the induction hypothesis to the premises and get that
(r, CS[S1] ,e sto)>* (r', €€, sto’ yand
(r'", CS[S2] ,e sto) ™ (r' e ¢, sto)
Since we can extend the code component we get that
(r, CS[Si]: CS[Ss] ,e, sto)>* (r", CS[Sa] ,e st0") " (1 €,€,st0)

which completes the proof.

The rest of the cases can be found in Appendix A. We will now proceed to prove the following lemma’.

Lemma 6.8.3 For every command S of AWL and stores sto and sto', we have that
if (r,CS[S],e, sto) ¥ (r', e, e, sto') then (S, sto) — sto'

So if the execution of the code for S from a storage s terminates, then the AWL semantics of S from s
will terminate in a state being equal to the storage of the terminal configuration.

Proof: We will prove lemma A.4.3 by induction on the length & of the computation sequence on AM. If
k = 0 then the result holds because CS[S] = € is impossible. So we assume that it holds for k£ < ko and
will prove that it holds for k = kg + 1. We make a case study on the command S.

The case: z = exp;

We have that CS [z = ezp;] = CE [exp] : SAVE n [LS] , so we assume that

(r,CE [exp] : SAVE n [LS], ¢, sto) ko1 (' ¢ e, sto’)

"[2, p. 77]
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Since we can split the instruction sequence into two we have that
(r,CE [exp] , €, sto) k1 (r' e, e, stoYand
(r,SAVE n [LS],e",sto") k2 (r' €, e, sto)

where ki + ky = kg + 1. From the expression lemmas we get that sto’” = sto and e” = v where exp — v .
Using the semantics of SAVE we see that sto’ = sto[(r(LS) + z) — v]. It follows from [s - assign] that
(x = exp;, sto) — sto’, which completes the proof.

The case: if(be){S:}else{S2} true
We have that

CS [if (b){S1}else{S2}] =

CB[be] : JTUMPF n; : CS[S;] : JUMP ny : LABEL n; : CS[Ss] : LABEL ny

We assume that

(r,CB[be] : JUMPF n; : CS[S;] : JUMP ns : LABEL n; : CS[S2] : LABEL ng, €, sto) p¥ot1 (/¢ e, sto')
Since we can split up the code component we get

(r,CB [be], €, sto) k1 (" e e sto!"")
<T””,JUMPF Tll,e’”, St()””) [>k)2 <T”I, €, e//’ StO///>
(r'"",CS8[S1],€e", sto"") pks (¢ € e, sto')

(r'"" ,JUMP ns, €, sto") bka (1! ¢, e, sto')

where k1+k2+k3+k4 :kg-l-land kg,k4:1.

Since CB[be] and JUMPF does not change the storage, we have that sto'” = sto’’ and sto” = sto'.
Likewise CS [S;] and JUMP does not change the evaluation stack so we have that "’ = e’ = e =€e. We
assume that e"' = # .

Since k3 < ko we can apply the induction hypothesis to this computation and then we have that
(S1, sto) — sto’

The rule [S-if-true] gives the required (i f (be){ S }else{Sa}, sto) — sto’. The proof of i f(be){S }else{S2} false
is analogous.

The remaining proofs of this lemma can be found in Appendix A.

6.9 Summary

In this chapter we have (almost) proved that the translation functions defined in the previous chapter
are correct. We can not claim to have proven the total correctness of the translation, since we have not
proved the correctness of rule and ant type declarations due to a lack of time. It’s obious that with the
machine architecture of AWLAM, we are still far from any normal hardware implemented machine (such
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as the pentium). However we are now one step closer, and with the proof made in this chapter, one could
carry on towards an even lower level.

When making a proof like this, we make a computation sequence for each sequence of translated code.
During this process, one is certain to find errors or misunderstandings in the translated code. This
naturally makes it a very good exercise to do when wanting to translate a programming language into
another language.

In the next chapter we will implement the results of our theoretical work.
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Chapter 7

Implementation

In the following section we will describe how AWL is implemented from the high-level language to
the running program. First off we will describe the process from the AWL document to the AWLAM
document. In this section we have scanning, parsing, identification, type checking and finally code
generation. After this we will describe how the abstract machine works and how we will get from the
AWLAM document to a running program using an interpreter.

7.1 Scanning and Parsing

For this task we have chosen to use a tool that does the task for us. We have chosen to use SableCC!,
because it both scans and parses the code, unlike e.g. JLex that only scans the code or JCup that only
parses. Furthermore SableCC produces an abstract syntax tree that we will use in the later phases of
compiling. The scanner and parser that SableCC generates are based on a kind of Extended Backus Naur
Form (EBNF). This document can be found in the appendix.

In lexical analysis, or scanning as it is also called, the input program is scanned and divided into tokens
that the parser can use. A token is described by its kind and its spelling. This means that in this part
of the compiler, identifiers, keywords and other single parts of the program are recognized and put into a
token stream. This token stream is then used by the parser, in that it is examined in order to see whether
the statements made in the original program match those described in the grammar.

The purpose of parsing is to determine whether a stream of tokens is valid in accordance to the language
— and if this is the case, to group the tokens into larger pieces, such as Commands or Expressions.

An important concept in parsing is unambiguity, meaning that a specific sentence has one and only one
parse tree. The reason for this is that a sentence with more than one parse tree can lead to different end
results. Just consider the simple mathematical sentence 2 4+ 2-5. To us humans it is easy to see that the
result is 12, namely by unconsciously adding parentheses in order to determine the precedence: 2+ (2-5).
To the program, however, if nothing else is specified, the result might as well be 20: (2 + 2) - 5. Luckily,
if we have created our EBNF grammar correctly this should not be a problem.

As mentioned earlier in this section, SableCC makes an abstract syntax tree for the program. Furthermore
it produces a tree-walker which is based on an extended visitor pattern.

7.2 Identification and Type Checking

Using the before mentioned abstract syntax tree, we can now perform identification and type checking
also known as contextual analysis.

lhttp://www.sablecc.org/
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Expression type Input Output
or-Expression Boolean x Boolean — Boolean
and-Expression Boolean x Boolean — Boolean
equality-Expression  Direction X Direction — Boolean
Integer x Integer — Boolean
Boolean x Boolean — Boolean
relational-Expression Integer x Integer — Boolean
add-Expression Integer x Integer — Integer
mult-Expression Integer x Integer — Integer
unary-Expression Boolean — Boolean

Direction — Direction

Integer — Integer

Figure 7.1: Expression hierarchy

“The first task of the contextual analyzer is to relate each applied occurrence of an identifier
in the source program to the corresponding declaration.”?

To make sure that a program does not violate any contextual rules, one first has to look at identification.

What happens in the identification phase is that when an identifier is encountered, the identification
process checks to see whether this identifier has been declared earlier in the program. If it has not, then
the identifier ought to be about being declared (varident:integer) or else the program is ill formed and
an error will be generated.

One should notice when reading the above, that in order to positively know whether a reached identifier
has previously been encountered, you would have to search though all of the program examined so far. In
our case this is not so, however. Instead we will use an identification table, in which all the identifiers are
stored along with their type and other relevant information. Using this method, when encountering an
identifier (assuming that this is not the declaration), the table is simply checked for previous occurrences
of the identifier.

“The second task of the contextual analyzer is to ensure that the source program contains no
type errors.”?

In type checking we need to make certain that all expressions yield the expected type. An example of
this is the rule VarInit, which might look like this: varid : integer = 5+ 5;. Here we need to make sure
that the expression 5+ 5 yields an integer. This is one of the obvious rules — one not so obvious is when,
say, a non turn based rule is involved. Here we need to check whether the argument types sent along
with the rule call match those expected. Furthermore we need to check if the correct type is returned
by the return command in the rule, and check that it is not placed in such a way that it will result in
unreachable statements.

In figure 7.1 we show the expression hierarchy for AWL. Here we see that if we have the expression
5+ 3 x 1 we must first evaluate the 3 % 1 part, and then evaluate the result of it along with the 5+
part. This is implemented in type check in a way so that when an Expression is encountered, a method
eval Expression( Expression ) is called. The method first checks to see if the expression has any or-
Expressions in it — and if not, it continues down the list. If it does contain an or-Expression, the checked
expression is divide into two parts; the left and right side of the ’or’ and uses eval Expression on each
part. When both parts have done evaluating they return their respective types to the previous method.
The method can then evaluate the two expressions according to the above rules. What we end up with

2[3, page 136]
3[3, page 150]
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is either a SimpleType or an error is discovered during the process. In the latter case an exception is
thrown.

By this we can conclude that if the identification and type checking do not throw any exceptions, the
program is well formed, and we can proceed to the next step of compiling which is the actual code
generation.

7.3 Code Generation

In code generation we will continue using the abstract syntax tree generated by SableCC. We will use
the rules for code generation described in chapter 5, and apply these when walking trough the syntax
tree. A more elaborate description of the functions in the code generation can be found in the previous
mentioned chapter.

The result of code generation is an intermediate code document used by the abstract machine AWLAM
which is described next.

7.4 AWLAM Implementation

The implementation of the AWL abstract machine follows the operational semantics of AWLAM is close
as possible. The only notable difference is the fact that the implementation works with a PC register
(program counter) and the code is not placed on a stack, but in (in this case, simulated) memory. This
is, however, the way a hardware machine would have been implemented, and it is merely a slight step
down the abstraction ladder from the operational semantics. The reason for this minor abstraction in
the operational semantics is explained in section 3.

The abstract machine is implemented in Java, but it could just as well have been any other programming
language. It might have been more profitable to code an interpreter in an assembly language, though, but
since the purpose of this one was really not execution speed, and since the interpreter is in the periphery
of the project’s subject, we have chosen to do it in a high-level language. The specific language Java was
chosen because of it being the language of most experience to the implementer.

7.4.1 The Evaluation Stack

The standard environment of Java supports an implementation of a stack, which we have placed a wrapper
around and used here. The wrapper serves only as an interface receiving and returning the basic type int
instead of Objects as is the case with the standard Java implementation since ints are what we operate
on in the rest of the implementation.

This makes it very easy to implement the AWLAM instructions that operate on the evaluation stack,
since it is just a question of invoking the push and/or pop methods whenever the operational semantics
dictates it.

7.4.2 Registers

There is a fixed amount of registers to be implemented into the AM. Therefore it was obvious to use an
array which, in Java terms, has a fixed amount of indexes. For referring to the specific indexes of the
array, i.e. the specific registers of the AM, we use so-called fields, or final variables (constants). One per
index in the array, each with a name of a register and with a (fixed) value of an index in the array. This
makes us able to refer to e.g. the PC register by reg[PC], provided the array is called reg.
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} else if (instr([0].equals(‘““JUMPF”’)) {
String n = instr[1];
int z = label(N(n));
int b = stack.pop();
reg[PC] = (b == FALSE 7 z : reg[PC] + 1);
} else if

Figure 7.2: Variables equal to those in the operational semantics.

} else if (instr[0].equals(*‘JUMPF’’)) {
reg[PC] = (stack.pop() == FALSE ? label(N(instr[1]) : reg[PC] + 1);
} else if

Figure 7.3: Higher level of optimization.

7.4.3 Memory

The memory, too, is an array. Or in fact, two arrays; one for code, and one for data. This is not the
normal way of doing so, and it prevents methods such as self-modifying code. However, we don’t need
such things in AWLAM and that combined with the fact that splitting memory into two makes it possible
for us to keep code in a string array (as we interpret assembler-like code and not binary machine-like
code) and data in an int array, made us choose to do so. We still use an overall memory size, though,
which is by the way adjustable from the command line, and assign only as much code memory as needed
while the rest goes to data memory.

As said, all data items are strictly integer values, represented by Java’s int type. In AWL, however,
we have other basic types, namely booleans and directions*. They both have a very limited amount of
possible values, so we solve this by simply assigning an int value to each boolean and direction value.
To represent these values, we use constants (again as Java fields) in order to easily be able to work with
them. This way we can push e.g. a “true” value by stack.push(TRUE); given “stack” is the name of
the evaluation stack, and “push” is the name of the method that pushes new values into the top of a given
stack. Both is the case in our situation.

7.4.4 Interpretation

The interpretation itself is basically a while construct, running as long as the program counter points
within the code memory. For each loop, the code line pointed out by PC is evaluated, and action is taken
accordingly. This action includes updating the PC register, whether this means simply increasing it by
one, as in most instructions, or changing it to a totally different value, as is the case with e.g. the JUMP
instruction.

Most of the actions performed when an instruction is recognized could have been formatted quite differ-
ently, and possibly more efficiently. However, we wanted to make a clearer connection to the operational
semantics, and therefore we often save a given value in a variable (named as in the operational semantics),
just to use it for the last time during the program in the very next Java code line. See an example of this
in figures 7.2 and 7.3.

In the operational semantics we have functions for different purposes. An example of this is the N[n]
function which gives the value of a numeral n. Equally we get the “numerals” as strings so this is a
suitable reason for constructing an N(n) method, converting a string n to an int. The label(l), m(), and
r() methods are of the same principle, only that their functions are respectively to return the memory
location pointed to by a label, to return the value of a given memory location, and to return the value

4See e.g. section 2.8 about these.
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of a register. All methods are implemented in a very simply way, and from a technical point of view
they could probably have been omitted — however they serve a purpose of easy understanding as well as
reference to the operational semantics.

7.5 Screenshots

& C:"Documents and Settings*, Administrator’My Documents' helloYorld-awl - |EI|1|
File Run

)= D] [E] | compie | run pobus]

1 world(250,10,5) {

2

3 rule Rwalk(war team : integer; war ant : integer; war d @ direction;){

4 wvar ant3ize : integer = Z + getProperty(8):

5 war teamSize : integer = 4 + getProperty(7) + [getProperty(l) * antiize);

& war lteam @ integer = 9 4+ getProperty(6) + [(getProperty(Z)%Z) 4+ [(team * teamSize

7 war lant : integer = lteam + getProperty(7) + 4 + (ant ¥ antfize);

g war ¥ : integer = getProperty(lant):

9 wvar ¥ : integer = getProperty(lant + 1):

10

11 if (d == left)!{ x = x - 1: | else{

1z if (d == right){ x = x + 1; } else{

13 if (d==up){ ¥ =% - 1; } else!

14 if (d == down){ ¥ = ¥ + 1; } else{ skip:; }}}}

15

16 if (x == getProperty(0)){ x = 0; } elsef skip: }

17 if (x == -1){ x = getProperty(0)-1; } else{ skip; }

18

19 if (¥ == getPropertyi(0)){ ¥ = 0; } else{ skip:; }

20 if (¥ == -1){ ¥ = getProperty(0)-1; } else! skip: }

21

22 setProperty(lant, =) ; |
Farsing prograrm... -~ |
P\ddressing...
Generation AWLAM code...

titing code tofile...
Done!
=

4 [+]
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7.6 Summary

In this chapter we have had a look at some aspects of the implementation in the various stages from
scanning and parsing, through identification and type checking to code generation, and at last the inter-
preter.

The scanning and parsing part is in our case handled by SableCC. Fed with something very close to an
EBNF of the AWL language, the tool provides us with a scanner and parser able to verify a given piece
of AWL code by producing an abstract syntax tree and traversing through it using an extended visitor’s
pattern.

Identifiers are kept track of by an identification table so that we will not have to look through the whole
program every time an identifier is encountered. Next phase is type checking, where we make sure that
for e.g. every integer variable declaration, also the value initializing it must be an integer.

Code generation is based on the rules set up earlier in this report and produces program code, interpretable
by the AWLAM interpreter.

The interpreter itself emulates a machine, in that it contains registers, memory and an evaluation stack.
It runs through the AWLAM code from one end to the other, reacting on the instructions it sees, whether
the instructions tell the interpreter to calculate something and proceed or jump to another place in the
code.
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Chapter 8

Conclusion

In the preceding chapters we have described the development of the programming language AWL. We
will now compare what was required of the programming language with what has happened in the report.
We will go through these requirements one by one and describe how we have dealt with the problem’.

AWL has to contain high level language constructs, such as in C: We have implemented AWL to
contain high-level constructs such as while and if statements, along with variable and array declarations.

AWTL has to provide specific constructs for the programmer, so that rules such as walk(LEFT)are
easy to create: AWL provides ways for the programmer to declare a rule, and then a way to call this
rule from a command or an expression. Furthermore we have provided a construct that allows the pro-
grammer direct access to the memory so that creating an ant of moving an ant becomes possible. This
makes the language very flexible for the programmer using it.

AWL has to provide a construct to allow the world programmer to move the focus from
one ant and team to another ant and team: AWL contains a command that allows an ant to be
processed i.e. moved or what ever the ant creator wants his or her ant to do.

AWL has to provide some “ant memory” which differ in scope: In AWL each ant will have its
own memory, that no other ant can access. Furthermore AWL provides a team memory that all ants
from a team can access and modify, and a common memory that all ants regardless of team can access.

AWL has to provide a construct for creating teams: We have added a construct that can add a
team to a game by a simple declaration.

AWL has to compile to an abstract machine, which we will call AWLAM(AWL Abstract
Machine): The abstract machine AWLAM has been defined and implemented. Also an interpreter
to run the code generated by AWLAM has been defined and implemented. This interpreter shows a
graphical representation of the game that it interprets.

Below we will describe how the product of the report adheres to the goals of the report. We will, like
with the requirements, describe each goal one by one.

Define the grammar of the high-level language AWL, using Backus Naur Form(BNF): In
chapter 2 of the report the grammar of AWL is described. This grammar is using the BNF notation
form, and describes the constructs of the language.

Define an operational big step semantic for AWL: In chapter 3 The big step semantic of AWL
is shown. Here, the full description of how the semantics works is given. An abstract syntax that the

IThe requirements can also be found in chapter 1
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semantics is based on has been defined. There is a thorough description of each syntactic category from
this abstracts syntax, and of the rules from each of these categories.

Define the abstract machine AWLAM and have the AWL compile to this: In chapter 4 the
abstract machine(AWLAM) has been defined. We here define the abstract syntax that AWLAM adheres
to, and give a description of each instruction found in the syntax.

Prove that the translated code is actually equivalent with the original AWL code: In order
to prove the translated code is equivalent with the original AWL code, we have in chapter 5 described
how the various semantical rules from AWL translates to AWLAM. We then, in chapter 6, proceed by
proving that the implementation is correct, by comparing the translated code with the semantics defined
in chapter 3. We here use different forms of induction as a proof method.

Our main goal in this project was to define the operational semantics of AWL, and then prove that a
translation of AWL code into some target language would actually be correct. To do that it has been
necessary to define a lot of other things as well, which was not a part of the goal as such, but which enables
and helps us to reach the desired result. Before defining an operational semantics it was a necessity to
have a syntax which was well defined, and actually showed the details of all constructs. As such it would
have been enough to just have an abstract syntax, but that might have become rather complex since the
definition of the syntax also gave us insight into what the problem area was actually about.

As such an operational semantics serves as a clear and precise notation that shows how the language
actually behaves when being used. However there is no actual standard notation, which makes it difficult
to describe the semantics in a way that is easy to read for everyone. We have aimed at defining a notation
that both satisfies the need for a precise definition, but also a notation that should be somehow easy to
read, compared to the relative complexity of the matter.

In the definition of the abstract machine the main issue was to make a machine that was simple and
easy to understand, but yet at a higher level than for example the Pentium platform is today. A lot of
issues arise when designing a piece of software at this level, and we have tried to make it as abstract
as possible, without actually going high level. It would of course have been possible to use an existing
abstract machine, but we felt that it would give us a better feeling with the machine to actually develop
it ourselves, and also it enabled us to leave out aspects, which are indeed important from a general point
of view, but which were not central to our project.

The definition of an operational semantics for the abstract machine was of course central to the task of
proving the correctness of the translation process, and we have partially proved the equivalence of the
two operational semantics using induction, giving us a mathematical proof of the correctness.
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Appendix A

Provable Correct implementation

In this appendix we have listed all the proofs of translation correctness.

A.1 Variable Declarations

A.1.1 Variables

In this section we will prove that the translation of variable declarations is correct. We define a lemma
to express the correctness.

Lemma A.1.1 For all variable declarations we have that
if (Dy, envy, sto) — (envy,, sto') then (r,CDy [Dv] p, e, sto) b* (1, €, €, sto')

where envy, (next) = r' (NEXT)

So each variable must be stored at the same storage location in the two semantics. Also the pointer next
must point to the same location as the register NEXT after declaration.

Proof: We will make the proof by induction on the shape of the derivation tree.

The case: [Dv-variable-declaration-empty]

We assume that (¢, envy, sto) —p, (envy,sto). Using the translation function we get that CDy [e] p =
NOOP. Using the semantics of NOOP we get that

(r,NOOP, ¢, sto) > (r, €, €, sto)

which completes the proof of this case.

The case: [Dv-variable-declaration]

We assume that (var z:type=exp; Dy, envy, sto) — (envy,, sto') holds because

(Dv, envy [z — (type, )] [nest — new (1)], sto [l = v]) = p,, (env},, sto’)(WhiCh is the premise)
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because | = envy (next).

Using the code translation function we get that
CDy [var z : type=ezp;Dy] p = CE [exp] : SAVE O0[NEXT]: NEXT : CDy [Dy]p
We can now make the following computation sequence.

(r,CE [exp] : SAVE 0[NEXT] : NEXT : CDy [Dvy]p,e¢, sto) >*
(r,SAVE O0[NEXT] : NEXT : CDy [Dvy] p,v, sto) >
(r,NEXT :CDy [Dy] p,€,sto") >

(r",CDy [Dy] p,e, sto)
We see that sto” = [l — v], so it follows that the variables are stored at the correct locations.
Applying the induction hypothesis to the premise we get that
(r",CDy [Dv] p,e, sto”) >* (r', ¢, ¢, sto')

which completes the computation which ends in the required state. It follows from the computation
sequence that envy, (next) = r'(NEXT). This completes the proof of lemma A.1.1.

A.1.2 Arrays

The following lemma expresses the correctness of array declarations.

Lemma A.1.2 For all array declarations we have that
if (Da, envy, sto) — (envy,, sto') then (r,CDA[Da] p, €, sto) > (1, €, €, sto')

where r(NEXT) = envy (next)

So each array must be stored at the same storage locations in the two semantics. Also the pointer next
must point to the same location as the register NEXT after declaration.

Proof: We will use induction on the shape of the derivation tree to prove lemma A.1.2.

The case: [Da-declaration-empty]

We assume that (e, envy, sto) = p, (envy, sto). Using the translation function we get that CD 4 [e] p = NOOP,
and with the semantics of NOOPwe have that

(r,NOOQOP, ¢, sto) > (r, €€, sto)

which completes the proof of this case.

The case: [Da-declaration]

We asume that
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(array z[n] :type=ezp; D4, envy, sto) —p, (env},, sto’)
because
(D4, envy[z — (type, 1, z)][next — new (1, 2))], stoll; — v]) - p, (env},, sto’)

where
i € [0..z — 1] and | = envy (next) and z > 0.
Using the code translation function we get that
CDAarray z[n] : type = exp Da]p =
PUSH ng : LABELn; : DUP : PUSH 0 : EQ : NEG : JUMPF ny : C€ [exp] : SAVE O[NEXT] :

NEXT : PUSH 1 : SWAP : SUB : JUMP n; : LABELns : POP : CDA[D4] p

We can now make the following computation sequence:

PUSH ng : LABELn; : DUP : PUSH 0 : EQ : NEG : JUMPF ng : CE [exp] : SAVE 0[NEXT] o) n7
"\ NEXT:PUSH 1 : SWAP : SUB : JUMP ny : LABEL ns : POP : CD 4 [Da] p €810

CE [exp] : SAVE O[NEXT]: NEXT : PUSH 1 : SWAP : .
< » SUB:JUMP ny : LABEL ns : POP : CD 4 [Da] p e St">‘>

(r", PUSH 1 :SWAP : SUB: JUMP n; : LABEL ny : POP :CD A [Da]p ,e,sto')>*
(r"', JUMP ny : LABELng : POP :CD A [Da]p €, sto’) "

(r'"", CDA[Dalp € sto") >

(', €, €, sto’)

We get the first part of the computation using the semantics of AM, and we see that sto” = sto[l; — ]
where i € [0.N[n] — 1] as required. We get the last part by applying the induction hypothesis to the
premise. This completes the proof of lemma A.1.2.

A.1.3 Common Memory

The following lemma expresses the correctness of common memory variable declarations.

Lemma A.1.3 For all common memory variable declarations we have that
if (Duc, envy, sto) = (envy,, sto') then (r,CD e [Dumc] ps €, sto) b (r', €, €, sto')

where r'(NEXT) = envy, (next).

So each common variable must be stored at the same storage location in the two semantics. Also the
pointer next must point to the same location as the register NEXT after declaration.

Proof: We will use induction on the shape of the derivation tree to prove lemma A.1.3.

The case: [Dmc-common-empty]

We assume that (g, envy, sto) = p,,. (envy, sto). Using the translation function we get that CDqc [e] p = NOOP.
Using the semantics of NOOP we get that
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(r,NOOQOP, e, sto) > (r, €€, sto)
which completes the proof of this case.

The case: [Dmc-common]

We assume that (common var z : type=exp; Dy, envy, sto) — (envy,, sto') holds because
(Duyc, envy [z — (type, 2)] [next — new(l)], sto[l — v][ COMMONDECLS — z + 1])

Using the code translation function we get that

CD e [common var z : type = ezp; CDyo] p =

CE [exp] : SAVE 0 [NEXT]: NEXT : LOAD 6 [SD] : PUSH 1 : ADD : SAVE 6 [SD] : CD ¢ [Duic]
We can now make the following computation sequence.

(r,CE [exp] : SAVE 0 [NEXT|: NEXT : LOAD 6 [SD]: PUSH 1 : ADD : SAVE 6 [SD] : CDnqc [Duc], €, sto) >*
(r'",LOAD 6 [SD]: PUSH 1 : ADD : SAVE 6 [SD]: CDaqc [Duc]se, sto') >
<T‘”,C'DMC [Ducl,e, sto”) >

(r', e, €, sto)

We get the two first parts of the computation by using the semantics of AM. We see that sto” = sto[l — v]
as required. The last computation is made by applying the induction hypothesis to the premise. It follows
from the computation sequence that ' (NEXT) = envy, (next) which completes the proof.

A.1.4 Teambrain Memory

The following lemma expresses the correctness of teambrain memory variable declarations.

Lemma A.1.4 For all teambrain memory variable declarations we have that
if (Dyr, envy, sto) — (envy,, sto') then (r,CDym7 [Dur] p, €, sto) > (r', €, €, sto')

So that state of the storage must be identical after computation in the two semantics.

Proof: We will conduct the proof of lemma A.1.4 by induction on the shape of the derivation tree.

The case: [Dmt-team-empty]

We assume that (g, envy, sto) = p,,, (envy,sto). Using the translation function we get that CD a1 [¢] p = NOOP.
Using the semantics of NOOP we get that

(r,NOOQOP, e, sto) > (r, €€, sto)

which completes the proof of this case.

The case: [Dmt-team]

We assume that (teambrain var z : type ; Dy, envy, sto) — (, envi,, sto') because
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(Dur, envy [z = (type, 2)], sto]l TEAMDECLS + z + 1]) — (env},, sto')

Using the code translation function we get that

CD a7 [teambrain var z : type; CDyr]p =

LOAD 7 [SD] : PUSH 1: ADD : SAVE 7 [SD] : CDa¢r [CD 7]
We can now make the following computation sequence.

(r,LOAD 7 [SD] : PUSH 1: ADD : SAVE 7 [SD] : CD 7 [CDur7], €, sto) b
(r",CDpm7 [CDyr]s €, st ) B*

(r', e €, sto)

We get the first parts of the computation by using the semantics of AM. We see that sto” = sto[7 — z+1]
as required (TEAMDECLS = 7). The last computation is made by applying the induction hypothesis
to the premise, which completes the proof.

A.1.5 Private Memory

The following lemma expresses the correctness of private memory variable declarations.

Lemma A.1.5 For all private memory variable declarations we have that
if (Dur, envy, sto) — (envl,, sto') then (r,CDamT [Dur] p, €, sto) > (r', €, €, sto')

So that state of the storage must be identical after computation in the two semantics.

Proof: We will conduct the proof of lemma A.1.5 by induction on the shape of the derivation tree.

The case: [Dmt-private-empty]

We assume that (g, envy, sto) = p,,» (envy, sto). Using the translation function we get that CDaqp [¢] p = NOOP.
Using the semantics of NOOP we get that

(r,NOOQOP, ¢, sto) > (r, €€, sto)

which completes the proof of this case.

The case: [Dmt-private]

We assume that (private var z : type ; Dyp, envy, sto) — (,envi,, sto') because
(Dyr, envy [z — (2, type)] , sto|l PRIVATEDECLS + z + 1]) — (env},, sto')

Using the code translation function we get that

CDmp [private var z : type; CDyplp =

LOAD 8 [SD]: PUSH / : ADD : SAVE 8 [SD] : CDaqp [CDup] p
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We can now make the following computation sequence.

(r,LOAD 8 [SD]: PUSH 1 : ADD : SAVE 8 [SD] : CDap [CDump] p, €, sto) b2
<7‘”,CDM7> [CDump], €, sto”) >*

(r', e €, sto)

We get the first parts of the computation by using the semantics of AM. We see that sto” = sto[8 — z+1]
as required (PRIVATEDECLS = 8). The last computation is made by applying the induction hypothesis
to the premise, which completes the proof.

A.2 Parameters

The correctness of formal parameters is expressed by the following lemma.

A.2.1 Formal

Lemma A.2.1 For all formal parameters we have that
if (Pr, envy) — (envy,) then (r,CPx [Pr]p,e,sto) > (r', e, ¢, sto')

where the stack e contains the actual parameter values, and where sto' has the parameters stored at the
locations following r(NEXT).

Proof: To make this proof we will assume that there are the same amount of actual parameters as there
are formal parameters. We will prove lemma A.2.1 be induction on the shape of the derivation tree.

The case: [Pf-formal parameters-empty]|

We assume that (g, envy) —p, (envy). Using the translation function we get that CPx [¢] p = NOOP.
Using the semantics of NOOP we get that

(r,NOOP,e¢, sto) > (r, €, €, sto)

Since there are no formal parameters then there are no actual parameters either. This completes the
proof of this case.

The case: [Pf-formal parameters]

We assume that (var z : type; Pr,envy) —g envi, holds because
(Pp,envy [z — ] [next — new (1)]) — env’v.(which is the premise)

because | = envy (next).

Using the code translation function we get that
CPx [var z : type; Pr] p = SAVE 0 [NEXT) : NEXT : CPx [Pr]
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We can now make the following computation sequence.
(r,SAVE 0 [NEXT]: NEXT : CPx [Pr],e, sto) >*
<’f’”, CPV IIPF}] p, 6’, StO”) >

(r', e €, sto')

We see that sto” = [l — v], and it follows from the computation that the parameters are stored at the
correct locations. The last computation is made by applying the induction hypothesis to the premise.
This completes the proof.

A.2.2 Actual

The correctness of actual parameters is expressed by the following lemma.

Lemma A.2.2 For all actual parameters we have that
if (Pa, envy, sto) — (envy,, sto') then (r,CP 4 [Pr] p, €, sto) > (r', €, e, sto)

where the stack e contains the actual parameter values.

Proof: We will prove lemma A.2.2 be induction on the shape of the derivation tree.

The case: [Pf-actual parameters-empty]

We assume that (e, envy, sto) —p, (envy,sto). Using the translation function we get that CP [e] p =
NOOP. Using the semantics of NOOP we get that

(r,NOOQOP, ¢, sto) > (r, €€, sto)

Since there is no actual parameter then e = e. This completes the proof of this case.

The case: [Pf-actual parameters]

We assume that (exp; Pa, envy, sto) —p, (envi,, sto') holds because
(Pa,envy [next — new (1)], sto [l = v]) = (env},, sto)

because | = envy (next).
Using the code translation function we get that
CPalae; Pa]p =
CPa[Pa]:CAfae]
We can now make the following computation sequence.
(ryCPA [Pa] : CA[ae], e, sto) >*
(r",CATae], e, sto) b*
(r', e, e, 5to)

The first computation is done by applying the induction hypothesis on the premise and by using that we
can extend the code base. It follows from the computation that the actual parameters will be placed on
the stack.
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A.3 Expressions

A.3.1 Arithmetic

The correctness of the implementation of the arithmetic expressions in AWL is expressed by lemma A.3.1.

Lemma A.3.1 For all arithmetic expressions ae we have that
(r,CAlae] ¢, sto) > {r,e, z, sto)
where envp, envy, sto bk ae — 4. 2.

Furthermore, all intermediate configurations of this computation sequence will have a non-empty evalu-
tation stack.

Proof: The proof of lemma A.3.1 is done by structual induction on ae.

The case: [ae-lit]

Using the code generation function C.A,we have that CA[n] p = PUSH n. From the semantics of AM
we have that

(r,PUSH n,¢, sto) > (1’ ¢, z, sto)

and since n — z in the operational semantics for AWL, we have completed the proof for [ae-lit].

The case: [ae-var]

We have that CA[z] p = LOAD n [LS], where LS is the register, which points to the local base address
of the current routine p, and where n = mloc (p,z) (the relative address of z inside p).

Using the semantics of AM we have that
(r,LOAD n [LS], ¢, sto) > (r', €, sto (r (LS) + z), sto)

In the operational semantics of AWL we have that © — sto (envy (2)). Using the definition of LS and
mloc we see that 7(LS) + z = envy (), which completes the proof of this case.

The case: [ae-array]

We have that
CA[z [ae]] p = CA[ae] : PUSH n : ADD : LOADS [LS]

where LS is the register, which points to the local base adress of the current routine p, and where
n = mloc(p, ) is the relative adress of the first element of the array variable z inside p.

We can make the computation sequence
(r,CA[ae] : PUSH n : ADD : LOADS [LS],¢, sto) >* (', €,sto (r (LS) + 21 + 22) , sto)
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where z; = N [n] and ae —,. 23

The semantics of AWL states that z[ae] —4. sto (envy () + z2). Using the definition of LS and mloc
we see that r(LS) + z = envy (), which completes the proof of this case.

The case: [ae-common memory variable]

Using the translation function we have that
CA[cmem z] = LOAD n [CM]

where CM is the register pointing to the first common memory location and n = mloc (memory, x),
where n is the relative address of x in the memory scope. When applying the semantics of AM we get

(r,LOAD n [CM],¢,sto) > (r', e, sto(r (CM) + z), sto)

In the operational semantics of AWL we have that (cmemz) —,. 21 where envy (z) = (integer, z1). and
21 = (COMMONBASE + z;).

Using the definition of CM and mloc we see that r(CM ) + z = z;, which completes the proof of this case.

The case: [ae-teambrain memory variable]

We have that CA [tmem z]p = LOAD n [CTM] where CTM is the register pointing to first teambrain
memory location for the current team and n = mloc (memory,x), where n is the relative address of z in
the memory variable scope. Using the translation function we get that

(r,LOAD n [CTM],¢,sto) > {r' ¢, sto(r (CTM) + z), sto)
Since tmem x — 4, 21 where envy (x) = (integer, z3) and
21 = sto (teamLoc (sto (CURRENTTEAM)) + TEAMALLOC + z2)
we need to show that
r(CTM) + z = teamLoc (sto (CURRENTTEAM)) + TEAMALLOC + 23

The definition of team Loc specifies that it will return the base storage location of a given team. Using
that, the definition of CTM and z = 25, we can see that the above statement holds.

The case: [ae-private memory variable]

We have that
CA[pmemz;]|p = LOAD n [CAM]

where CAM is the register pointing to first private memory location for the current ant on the current
team and n = mloc (memory, z), where n is the relative address of z in the memory variable scope. We
then have

(r,LOAD n [CAM],e,sto) > (r' e, sto(r (CAM) + z), sto)
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Since pmem x —,, 21 where envy (x) = (integer, z;) and
21 = sto (antLoc (sto (CURRENTTEAM ), sto (CURRENTANT)) + ANTALLOC + 22)
we need to show that
r(CAM) + z = antLoc (sto(CURRENTTEAM) ,sto(CURRENTANT)) + ANTALLOC + 2z

The definition of antLoc specifies that it will return the base storage location of a given team and ant.
Using that, the definition of CAM and z = 25, we can see that the above statement holds.

The case: [ae-random]

Using the code translation function we get that
CA[random(ae)] p = CA[ae] : RAN
This results in the computation sequence

(r,CA[ae] : RAN, ¢, sto) > (r', RAN, z1, sto) > (r, €, 22, sto)

where 0 < 22 < 21

The first computation is made by applying the induction hypothesis to ae and the second by using the
semantics of RAN. It follows from the rule [ae-random] that this completes the proof.

The case: [ae-getProperty]|

Using the code translation function we have
CA[getProperty(ae);] = CA[ae] : LOADS [SD]
and we there have the computation sequence

(r,CA[ae] : LOADS [SD] e, sto) >*
(r', LOADS [SD], 21, sto) >

(r", €, 22, sto)

To make the first computation we apply the induction hypothesis to ae, and to make the second we use
the semantics of LOADS. We see that zo = sto(z1), and using the rule [ae-getProperty] we see that this
is the required result.

The case: [ae-par]

We have that
CA[(ae)] = CAJae].
Applying the induction hypothesis to ae we get that
(r,CA[ae] ¢, sto) >* (r', €, 2, sto)
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Since (ae) —4. 2z the proof is complete.

The case: [ae-add]
We have that

CAlae; + aez] = CAJaes] : CAJae;] : ADD
Applying the induction hypothesis to ae; and aes results in

(r,CAJaeq], e, sto) >* (r', €, 21, sto) and

(r',CAJaez], ¢, sto) ™ (r'" e, 22, sto)
Since we can extend the code base, we have that

(r,CAJaez] : CAJae;] : ADD,e,sto) >* (r,CA[aes] : ADD, 23, sto) >*

(r,ADD, z; : 22, sto)
We now apply the transition rule for ADD, and get
(ry ADD, 21 : 22, sto) b* (r,€,(21 + 22), sto)

Since aeq + aes —rqe (21 + 22) in the semantics of AWL, the proof is complete.

The case: [ae-sub]

We have that
CAlae; — aeg] =CAlaez] : CAJaes] : SUB
Applying the induction hypothesis to ae; and aes results in

(r,CAlaeq], e, sto) b* (1, €, 21, sto) and

(r',CAJaez], €, sto) >* (r'" e, 22, sto)
Since we can extend the code base, we have that

(r,CA[aez] : CA[aes] : SUB, ¢, sto) >* (r,CA[ae;] : SUB, 23, sto) >*

(r,SUB, z1 : 22, sto)
We now apply the transition rule for SUB, and get
(r,SUB, 21 : 22, sto) b* (r,€, (21 — 22), sto)

Since ae; — aes —4e (21 — 22) in the semantics of AWL, the proof is complete.

The case: [ae-mult]

We have that
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CAlae; - aep] = CAlaes] : CAfae;] : MULT
Applying the induction hypothesis to ae; and aes results in

(r,CAlaeq], e, sto) >* (r' €, 21, sto) and

(r',CAJaez], ¢, sto) ™ (r'" e, 22, sto)
Since we can extend the code base, we have that

(r,CAJaez] : CAJae;] : MULT, ¢, sto) >* (r,CA[aes] : MULT, 23, sto)

(r, MULT, 2 : 22, sto)
We now apply the transition rule for MULT, and get
(r, MULT, 21 : 22, sto) b* (r, €, (21 - 22), sto)

Since aeq - aes —rqe (21 + 22) in the semantics of AWL, the proof is complete.

The case: [ae-div]|

We have that
CAlae;/aes] = CAlaez] : CA[ae;] : DIV
Applying the induction hypothesis to ae; and aes results in

(r,CAlaeq], e, sto) b* (r' €, 21, sto) and

(r',CAJaez], ¢, sto) ™ (r'" e, 22, sto)
Since we can extend the code base, we have that

(r,CA[aez] : CAJaes] : DIV, e, sto) >* (r,CAJae;] : DIV, 25, sto) >*

(r,DIV, 21 : 22, sto)
We now apply the transition rule for DIV, and get
(r,DIV,z1 : za, sto) b* (r,€,(z1/22), sto)

Since aeq - aea =4 (21/22) in the semantics of AWL, the proof is complete.

The case: [ae-rulecall]

We have that
CA[r(Pa)] =CP4[P4] : CALL n;,ns : LOAD 0 [NEXT)
This gives us the computation sequence
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(r,CP4[Pa] : CALL ny,ns : LOAD 0 [NEXT], €, sto) >*
(r,CALL n;,nz : LOAD 0 [NEXT],e, sto') >*
(r, LOAD 0 [NEXT], ¢, sto') >

(ry€,2,sto)

We get the first computation by using lemma A.2.2. The second computation is made by using the
semantics of CALL and the procedure protocols defined in the last chapter, which states (among other
things) that after returning from a procedure, the actual parameters have been removed from the stack.
The protocols also states that the return value is stored at location 0 relative to the address stored in
NEXT, and using LOAD we therefore get the final computation. We see that the storage has changed
which goes against the lemma - however since we haven’t updated NEXT the updated storage location
will be overwritten, making the change irrelevant. This concludes the proof of lemma A.3.1.

A.3.2 Boolean

The correctness of the implementation of the boolean expressions in AWL is expressed by the following
lemma.

Lemma A.3.2 For all boolean expressions be we have that
(r,CB[be] , €, sto) > (r, €, b, sto)
where envy , sto - be —p. b

Furthermore, all intermediate configurations of this computation sequence will have a non-empty evalu-
tation stack.

Proof: The proof of the lemma is done by structual induction on be.

The case: [be-lit]
Using the code generation function we have that CB[bl] = {TRUE,FALSE}.
From the semantics of AWLAM we have that

(r,CB[bl] €, sto) > (r, e, b, sto)

and since bl — b in the operational semantics for AWL, we have completed the proof for [be-lit].

The case: [be-var]

We have that CB[z] p = LOAD n [LS], meaning that this proof is analog to that of [ae-var].
The case: [be-array]|
We have that CB [z [ae]] p = CB [ae] : PUSH n : ADD : LOADS [LS], meaning that this proof is ana-

log to that of [ae-array].

The case: [be-common memory variable]
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We have that CB [cmem z] = LOAD n [CM], meaning that this proof is analog to that of [be-common
memory variable].

The case: [be-teambrain memory variable]

We have that CB[tmem z]p = LOAD n [CTM], meaning that this proof is analog to that of [be-
teambrain memory variable].

The case: [be-private memory variable]

We have that CB[pmemz;]p = LOAD n [CAM], meaning that this proof is analog to that of [ae-
private memory variable].

The case: [be-getProperty]

Using the code translation function we have CB [getProperty(ae);] = CB[ae] : LOADS [SD], meaning
that this proof is analog to that of [ae-getProperty].

The case: [be-par|
We have that CB[(ae)] = CB[ae], meaning that this proof is analog to that of [ae-getProperty].

The case: [be-equals(ae)]
We have that

CBlae; == aes]p = CA[aez] : CAJae;] : EQ
Applying the induction hypothesis to ae; and aes results in

(r,CAJaeq], e, sto) >* (r',e, 21, sto) and

(r',CA[aez], €, sto) >* (r' e, 22, sto)
Since we can extend the code base, we have that

(r,CAJaez] : CAJaes] : EQ, €, sto) >* (r,CAJae;] : EQ, 22, sto) >*

(r,EQ, 21 : 22, sto)
We now apply the transition rule for EQ, and get
(r,EQ, 21 : 22, sto) >* (r,e, (21 = 22), sto)

Since aey - aey —qe (21 = 22) in the semantics of AWL, the proof is complete.

The case: [be-equals(be)]
We have that CB[be; == beg] p = CB[aez] : CB[ae;] : EQ, meaning that this proof is analog to that of
[be-equals(ae)].

The case: [be-equals(de)]
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We have that CB[de; == deg] p = CB[deg] : CB[de;] : EQ, meaning that this proof is analog to that
of [be-equals(ae)].

The case: [be-not-equals(ae)]

We have that
CBlae;! = aex] p =CAJaez] : CAfaes] : EQ: NEG
Applying the induction hypothesis to ae; and aes results in

(r,CAlaeq], e, sto) b* (1, €, 21, sto) and

(r',CA[aes], €, sto) b* (', €, 22, sto)
Since we can extend the code base, we have that
(r,CA[aes] : CAfaes] : EQ : NEG, e, sto) »* (r,CA[ae;] : EQ : NEG, 29, sto) »* (r,EQ : NEG, 21 : 23, sto)
We now apply the transition rules for EQ and NEG, and get
(rBQ, 21 : 22, sto) >* (r,NEG, (21 = 23), 5t0) * (r,€, (21 # 22), st0)

which completes the proof.

The case: [be-not-equals(be)]

We have that CB[be;! = beg] p = CA[bes] : CA[be;] : EQ : NEG, meaning that this proof is analog to
that of [be-not-equals(ae)].

The case: [be-not-equals(be)]

We have that CB [de;! = deg] p = CA[des] : CA[de;] : EQ : NEG, meaning that this proof is analog to
that of [be-not-equals(ae)].

The case: [be-greater-than]
We have that

CBlae;>aes]p = CA[aes] : CAJae;] : LE: NEG

Applying the induction hypothesis to ae; and aes results in

(r,CAlaeq], e, sto) b* (1, €, 21, sto) and

(r',CAJaez], €, sto) b* (r'" e, 22, sto)
Since we can extend the code base, we have that
(r,CAJaez] : CAJae;] : LE : NEG,¢, sto) >* (r,CA[ae;] : LE : NEG, 22, sto) >* (r,LE : NEG, 21 : 22, sto)

We now apply the transition rules for LE and NEG, and get
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(r,LE, z1 : 22, sto) >* (r, NEG, (21 > 22), sto) b* (1, €, (21 < 22), sto)

which completes the proof.

The proofs of the constructs [be-lower-than], [be-greater-than-or-equals] is analogous.

The case: [be-and]
We have that

CB[besand bezx] p = CB[bes] : CB[bes] : AND
Applying the induction hypothesis to ae; and aes results in

(r,CAJaeq], e, sto) >* (r',e, 21, sto) and

(r',CA[aez], €, sto) b* (r' e, 22, sto)
Since we can extend the code base, we have that
(r,CA[aez] : CAJae;] : AND, ¢, sto) >* (r,CA[ae;] : AND, 23, sto) >* (r, AND, z; : 23, sto)
We now apply the transition rules for AND we get
(r, AND, z1 : 22, sto) >* (r, AND, (21 A 22), sto)

which completes the proof.

The proof of [be-or| is analogous.

A.3.3 Direction

All proofs of direction expressions are analogous to the proofs of arithmetic expressions.

A.4 Commands

The following theorem expresses, that if a execution of S terminates in a state in the semantics of AWL,
then it will also terminate in the semantics of the abstract machine AM with the resulting states being
equal. This also applies the other way around. The theorem also expresses that if the execution of S
from one state loops in one of the semantics then it will also loop in the other.

Theorem A.4.1 For every statement S of AWL we have that Sawr, [S] = Sam [S]

The theorem is proved in two stages expressed by lemma A.4.2 and lemma A.4.3.

Lemma A.4.2 For every statement S of AWL and stores sto and sto', we have that
if (S, sto) — sto' then (r,CS[S] €, sto) b* (r', €, €, sto')
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If the execution of S from the store sto terminates in the big step semantics for AWL, then the execution
of the translated code from the store sto will also terminate in the semantics for AWLAM and the resulting

stores will be equal.

Proof: The proof of lemma A.4.2 is completed by induction on the shape of the derivation tree for

(S, sto) — sto’. So we will prove the lemma for each command in AWL.

The case: [s - assign]

We asume that (x = exp, sto) — sto’ where sto’ = sto[l — v] , 1 = envy(z) and exp — v.

Using CS we get that
CS[z = exp] p = CE [exp] : SAVE n [LS]
where n = mloc(p, z). From the expression lemmas we have
(r, CE[exp] e, sto)>* (' €,v,sto)

and from the semantic rules of AM we get

(r',SAVE n [LS],v, sto) > (v, €, €, sto [(r(LS) + 2]) — v)

Since we have that envy (z) = 7(LS) + z this completes the proof.

The case: [S assign array]

We assume that

(x[ae] =exp;, sto) — sto’

where sto' = sto[(l + z1) = v] , ae = 2z, and envy (z) = (type,l, z2) and 0 < z; < 29

We have that

CS [z [ae] = ezp;]p = CE [ezp] : CAae]: PUSH n : ADD : SAVES [LS]

From C& and CA we get

(r,CE [exp] : CAae] e, sto) >* (r'",CA[ae] ,v, sto) b* (r', €, 21 : v, sto)

Applying PUSH we get

(r'"" PUSH n, z1 : v, sto) > (r"" ¢, 23 : 21 : v, sto)
where z3 = mloc (p,x). We now apply ADD

(1" ADD, 23 : 21 : v, sto) 5 (""", €, 24 : v, st0)
Finally applying SAVES [LS] we get
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(r'""" SAVES [LS],z4 : v, sto) > (r',e,¢€,sto)

Since | = 23, z1in the semantics of AWL equals z; in the semantics of AM, the proof is complete.

The case: [s - comp|

Using the semantics of AWL we have that (5155, sto) — sto' because (Si, sto) — sto' and (53, sto") —
sto'. Using CS we get that

CS[S182] =CS[S:]:CS[Se]

We apply the induction hypothesis to the premises and get that
(r, CS[S1] ,e sto)>* (r', e, e, sto’yand
(1", CS[S2] ,e,sto) ™ (r' e e, sto’)
Since we can extend the code component we get that
(r, CS[S1]: CS[S2] ,e,sto)p* (r", CS[Sa] ,e,sta")b* (' e,€, sto')

which completes the proof.
The case: [S-if-true]

We assume that (i f(be){S }else{S2}, sto) —g sto' because be —p. b, B[b] =t and (Sy, sto) =g sto'.

From the implementation we get

CS [if (be){S1 }yelse{S2}] =

CB[be] : JUMPF n; : CS[S;] : JUMP ny : LABEL n; : CS[Ss] : LABEL ny

For boolean expressions we have that <r, CBbe] ,e ,sto) > <r’, € ,b, sto>

Applying this we get

(r, CB[be] : JUMPF n; : CS[S;]: JUMP ns : LABEL n; : CS[S2] : LABEL ny ¢ ,sto)s*

(r', JUMPF n; : C§[S:] : JUMP nz : LABEL n; : CS§[Sz2] : LABEL ng, b, sto)
Using the rule for JUMPF n and assuming that b = # we have that

(r', JUMPF n; :CS[S:] : JUMP ny : LABEL n; : CS§[Sz2] : LABEL ng, b, sto) >

(r'",CS8[S1] : JUMP ny : LABEL n; : CS[S2] : LABEL ny, ¢, sto)
Using the rule for CS [S;] we get

(r",CS[S1] : JUMP ny : LABEL n; : CS[S2] : LABEL ng,¢, sto) >*

(r'"",JUMP ny : LABEL n; : CS§[Sz2] : LABEL ng, e, sto’)

Applying the rule for JUMP n we get
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(r'"", JUMP nz : LABEL n; : CS§[Sz2] : LABEL ngy,¢, sto’) >

(r', e, €, sto)

Since (S1, sto) —g sto' the proof is complete.

The case: [S-if-false]
This proof is analog to [S-if-true].

The case: [S-while-true]

We asume that (while(be){S}, sto) — sto” because be —p, t , (S, sto) — sto” and (while(be){S}, sto") —
sto'.

From our code translation functions we have that

CS [while(be){S}] =
LABEL n; : CB[be] : JUMPF ny : CS[S] : JUMP n; : LABEL ny
The computation sequence of the translated code results in

<T1, LABELn; : CB[be] : JUMPF ns : CS[S] : JUMP n; : LABEL na ¢, 5to>>
ra, CB[be] : JUMPF ns : CS[S] : JUMP n; : LABEL na €, sto>>*

r3, JUMPF ny :CS[S]: JUMP n; : LABEL ny ,t, sto>|>

T

{
(ra
(ris CS[S]: JUMP , : LABEL s ,c.s0)o
(rs

CS[S] : LABEL n; : CB[be] : JUMPF ny : CS[S] : JUMP n; : LABEL ny ,e,sto>

We get the last computation by using the semantics of JUMP. We now apply the induction hypothesis on
the premises of the AWL semantics for [while-true]. So (S, sto) — sto” and (while(be){S}, sto") — sto’
results in

(r5,CS[S]; €, sto) &* (re, €, ¢, sto) and
(ré, LABEL n; : CB[be] : JUMPF ny : CS[S] : JUMP n; : LABEL ng,¢,sto”) > (r7, €, €, sto')
Since we can extend the code component we get that
(rs, CS[S]:LABELn; : CB[be] : JUMPF n, : CS[S] : JUMP n; : LABEL ns e, sto)n"

(ré, LABEL n; : CB[be] : JUMPF ny : CS[S] : JUMP n; : LABEL ny ¢, sto” )

(r7, €€, 8t0")

This completes the proof for [S-while-true].

The case: [S-while-false]
This proof is analog to the proof of [S-while-true]

The case: [S-rulecall]

We assume (r(P4);, sto) —g sto* because
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(Pp, env}, [next — new (1)]) — env?,
(P4, envl, [nest — new (1)], sto) — (envd,, sto’)
(Dy,envi, sto'y —p,, (envty,sto”)
(Da,envi, sto”") = p, (envy,sto®)

<S, sto3> —g sto?

where | = envy (next) and envp (r) = (S, Pr,envy,, Dy, D4). From our code translation function we
have that

CS[r(Pa)] =CPa[Pa] : CALL ploc(r), parameter count
Using the semantics of CALL and the defined protocols we can rewrite our computation sequence to

CP.A [Pa] : CALL ploc(r), parameter count> =
CPA[PA] : CP£ [Pr] : CDy [Dy] : CDA[Da] : CS[S] : RETURN

We can now make the computation sequence

<T,CPA [[PA}] : CP]: ﬂppﬂ : CDV [[Dvl] : CDA HDAH :CS [[Sﬂ : RETURN,E, St0>D
(r',CS[S] e, sto?)

<r”,e,e,sto4>

We make the first computation using the other proofs in this chapter. To make the last computation we
apply the induction hypothesis to the premise <S, sto3> —g sto*, which completes the proof.

The proof of [S-endturn] and [S-process| is analogous.

The case: [S - common memory assign|
We assume that (cmem z=exp;, sto) — sto' where sto' = sto[ll — v] , | = envy () and exp — v.

Using CS we get that
CS[emem z = exp] = CE [exp] : SAVE n [CM]
where n = mloc(memory,z). From the expression lemmas we have
(r, CE[exp] ,¢,sto) ™ (r' e, v, sto)
and from the semantic rules of SAVE we get
(', SAVE n [CM], v, sto) > (r" ¢, ¢, sto [(r(CM) + 2]) — v)

Using the definition of CM we see that envy (z) = r(CM) + 2.

The case: [S - team memory assign]
We assume that (tmem z=exp;, sto) — sto’ where sto’ = sto[l = v] , | = envy (z) and exp — v.

Using CS we get that
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CS [tmem © = exp] = CE [exp] : SAVE n [CTM]
where n = mloc(memory, ). From the expression lemmas we have
(r, CE[exp] €, sto)>* (' €,v,sto)
and from the semantic rules of AWLAM we get
(r',SAVE n [CTM], v, sto) > (r", e, ¢, sto [(r(CTM) + z) + v])

Using the definition of CTM we see that envy () = r(CTM) + =.

The case: [S - private memory assign]
We assume that (pmem z=exp;, sto) — sto’ where sto’ = sto[l — v] , |l = envy(z) and exp — v.

Using CS we get that
¢S [pmem z = exp] = CE [ezp] : SAVE n [CAM]
where n = mloc(memory, ). From the expression lemmas we have
(r, CE[exp] ,¢,sto) ™ (r' e, v, sto)
and from the semantic rules of AWLAM we get
(r] SAVE n [CAM], v, sto) > (r", e, ¢, sto [(r(CAM) + z) s v])

Using the definition of CAM we see that envy (z) = r(CAM) + z.

The case: [S-return]
We assume that (return exp;, sto) — sto' where sto' = sto[l — v], | = envy (return) and exp — v.

Using CS we get that
CS [return ezp;] = CE [ezp] : SAVE 0 [LS]
From the expression lemmas we have
(r, CE[exp] ,e,sto)>* (' €0, sto)
and from the semantic rules of AWLAM we get
(r',SAVE 0 [LS], v, sto) > (1", e, €, sto [r(LS) s v])

Using the definition of LS and the defined protocols, we see that envy (return) = r(LS).

The case: [S-skip]
We assume that (skip;, sto) — sto. Using CS we get that
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CS [skip] p = NOOP

From the rule for NOOP we have that (r, NOOP, ¢, sto) > (r', €, €, sto) , which completes the proof.

The case: [S-setProperty]

We assume that (setProperty(ae, exp);, sto) — sto' where sto' = sto[l — v], exp — v1, ae = 2; and
z1 = l.
We have that
CS [setProperty(ae, ezp);] = CE [ezxp] : CA[ae] : SAVES [SD]
Applying CE and CA we get
(r,CE [exp] : CAae], ¢, sto) b* (r'",CA[ae],va, sto) b* (r'" €, z2 : va, sto)
Using the semantics of SAVES we get

(r'"",SAVES [SD], 22 : va, sto) > (r', ¢, €, sto')

Since | = z; = 25 and v; = v the proof is complete.

This concludes the proof of lemma A .4.2.

Lemma A.4.3 For every command S of AWL and stores sto and sto', we have that
if (r,CS[S],e, sto) ¥ (r', e, e, sto') then (S, sto) — sto'

So if the execution of the code for S from a storage s terminates, then the AWL semantics of S from s
will terminate in a state being equal to the storage of the terminal configuration.

Proof: We will prove lemma A.4.3 by induction on the length k of the computation sequence on AM. If
k = 0 then the result holds because CS[S] = € is impossible. So we assume that it holds for k£ < kg and
will prove that it holds for £ = kg + 1. We make a case study on the command S.

The case: x = exp;

We have that CS [z = exp;] = CE [exp] : SAVE n [LS] , so we assume that
(r,CE [exp] : SAVE n [LS], e, sto) sko+1 (+/ e e, sto')
Since we can split the instruction sequence into two we have that
(r,CE [exp] , €, sto) k1 ("' e, ", sto" Yand
(r,SAVE n[LS],€", sto") o*2 (1 ¢, e, sto')

115



A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATION

where ki + ky = ko + 1. From the expression lemmas we get that sto’’ = sto and e” = v where exp — v .
Using the semantics of SAVE we see that sto’ = sto[(r(LS) + z) — v]. It follows from [s - assign] that
(x = exp;, sto) — sto’, which completes the proof.

The case: z [ae] = exp;

We have that
CS [z [ae] = exp;]p = CE [exp] : CAJae]: PUSH n : ADD : SAVES [LS]
We can then make the computation sequence
(r,CE [exp] : CAae]: PUSH n : ADD : SAVES [LS],¢, sto) pkotl (¢/ ¢ e, sto')

Since we can split the code component up we get

(r,CE [exp], €, sto) sk (1%, ¢ e, sto®)
(r®,CAlae], e, sto®) pk2 (rt,e, €3, sto*)
<r4,PUSH n,e3,sto4> >ka <7‘3,€,82,St03>
<r3,ADD,eQ,st03> pka <r2,e,el,st02>
(r?,SAVES [LS],e!, sto?) bk5  (r' e, e, st0')

Wherek1+k2+k3+k4+k5:k0+1

Since CE [exp], CA[ae], PUSH and ADD do not change the storage, we have that sto = sto® = sto* =

sto® = sto®>. We also have that e* =v, e =2, :v,e> =20 :21:v,e' =23:vand e =c¢.

Since we have that sto' = sto[(l + z1) — v] where envy (z) = (type,l, z3) and 0 < z; < z3 this completes
the proof.

The case: 515>
We have that CS[S;S2] = CS[S:] : CS[S2], so we assume that

(r,CS[S1] : CS[S2], €, sto) kot (r' ¢ e, sto')
Since we can split the instruction sequence into two we have that
(r,CS[S1], ¢, sto) k1 (r' € €, sto') and
(r'",C8[S2], ¢, sta") b*2 (r' e, e, sto’)

where k1 + ko = kg +1,e'  =cand e —e.
We can now apply the induction hypothesis to (r,CS [S1], €, sto) %1 (r' €, €, sto') because ki < ko

(S1, sto) —g sto”

Because we have (r",CS[Ss], €, sto") k2 (r' € e, sto') and ky < ko we can now apply the induction
hypothesis one more time and get.
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(S2, sty —g sto’

This gives us (S1.92, sto) —s sto’ as required. The proof is now complete.

The case: if(be){S:}else{S2} true
We have that

CS [if (b){S1}else{S2}] =

CB[be] : JTUMPF n; : CS[S;] : JUMP ny : LABEL n; : CS[Ss] : LABEL ny

We assume that

(r,CB[be] : JUMPF n; : CS[S;] : JUMP ns : LABEL n; : CS[S2] : LABEL ng, €, sto) p¥ot1 (/¢ e, sto’)

Since we can split up the code component we get

(r,CB[be], €, sto) b1 (" e e sto'"")
<,’,,HH’JUMPF TL1,6”’, Sto””) >k2 <,’,,IH’ €, e//’ sto///>
(r'"",CS8[S1],€e", sto"") bk3 (1 € e, sto)

(r'" ,JUMP ns, €, sto") pka (' € e, sto')

where k1+k2+k3+k4 :kg-l-land kg,k4:1.

Since CB[be] and JUMPF does not change the storage, we have that sto'”’ = sto' and sto” = sto'.
Likewise CS [S;] and JUMP does not change the evaluation stack so we have that ¢’ = e’ =e =¢. We
assume that e"' = # .

Since k3 < ko we can apply the induction hypothesis to this computation and then we have that
(S, sto) — sto'

The rule [S-if-true] gives the required (i f (be){S; }else{Sa}, sto) — sto’. The proof of if(be){S; }else{S2} false
is analogous.

The case: while(be){S} true

The code for the while loop is
CS[while(be){S}]= LABEL n; : CB[be] : JUMPF ny : CS[S] : JUMP n; : LABEL ny
and we therefore assume that
(r,LABEL n; : CB[be] : JUMPF ny : CS[S] : JUMP n; : LABEL ny, ¢, sto) >Fot1! (¢ ¢ €, sto’)
Using the definition of JUMP we can rewrite the computation sequence in the following maner:
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(r,LABEL n; : CB[be] : JUMPF ny : CS[S] : JUMP n; : LABEL ng, ¢, sto) >
(" ,CB[be] : JTUMPF ny : CS[S] : JUMP n; : LABEL ns, ¢, sto) >
(r'""", JUMPF ng : CS[S] : JUMP n; : LABEL ng, t, sto) >
(#"" ¢S [S] : LABEL n; : CB[be] : JUMPF ny : CS[S] : JUMP n; : LABEL n, e, sto) ko2
(r',e,€,sto)
We can now split up our code component, and we get
(r'"" CS[S] e, sto) b*1 (1" € €, sto) and (1)
(r'""" LABEL n; : CB[be] : JUMPF ny : CS[S] : JUMP n; : LABEL ng, €, sto" ) bk2 (r' e, ¢, st0')  (2)

where ki + ko = kg — 2. Since k; < ko we can apply the induction hypothesis to the computation
sequence (1). We therefore get that (S, sto) — sto’. And since ks < kgwe can also apply the induction
hypothesis to the computation sequence (2) and we get that (while(be){S}, sto") — sto'. Using the rule
[S-while-true] we get (while(be){S}, sto) — sto’ as required.

The proof of the case while(be){S} false is analogous.
The case: skip;
We have that CS [skip;] = NOOP. That gives us the configuration
(r,NOOP, ¢, sto) > (1", ¢, e, st0')
Since e = € and sto' = sto and (skip;, sto) —g sto the proof is complete.
The case: setProperty(ae, exp);
We have that
CS [setProperty(ae, exp)] = CE [exp] : CA[ae] : SAVES [SD]
This give us the configuration
(r,CE [ezp] : CAlae] : SAVES [SD], ¢, sto) pko+1 (rl e ¢, stol)
We can split this into
(r,CE [exp], e, sto) bR (r2,¢e!, sto?)
(r2,CAfac] ¢! sto?) ok (13 €2 sto?)
(r®, SAVES [SD],e?,st0?) ks <r’,e,e,sto’>

We have that kg + 1=k + ks + ks, e =v1, e2 =21 : v and e = €.

From [S-getProperty] we have that ae — zo = [ and exp — vo . Because z; = zy and v; = vq this
completes the proof.

The case: cmem © = exp;

We have that
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CS [cmem z=ezp;] = CE [exp] : SAVE n [CM]
so we assume that
(r,CE [exp] : SAVE n [CM], €, sto) >kot1 (¢! ¢ e, sto’)
Since we can split the instruction sequence into two we have
(r,CE [exp], ¢, sto) k1 (¢ e, e, sto") and
(r,SAVE n [CM],e", sto") k2 (1 e, e, sto')

where ki + ko = kg + 1. From the expression lemmas we get that sto” = sto and e’ = v where exp — v
. Using the semantics of SAVE we see that sto' = sto[(r(CM) + z) — v]. It follows from [S-common
memory assign| and the definition of CM that (cmem z=exp;, sto) — sto’, which completes the proof.

The proofs of tmem and pmem are analogous.

The case: return exp;

We have that
CS [return ezp;] = CE [exp] : SAVE 0 [LS]
so we assume that
(r,CE [exp] : SAVE 0 [LS], ¢, sto) kot (v ¢ e, sto')
Since we can split the instruction sequence into two we have
(r,CE [exp], e, sto) >F1 (r' ¢, €', sto") and
(r,SAVE 0 [LS],e",sto") k2 (1 ¢ e, sto)

where ki + ko = kg + 1. From the expression lemmas we get that sto” = sto and e’ = v where exp — v
. Using the semantics of SAVE we see that sto’ = sto[r(LS) — v]. It follows from [S-return] and the
definition of LS that (return exp;, sto) — sto', which completes the proof.

The case: r (Py);
We have that

CS[r(P4);] =CP4[Pa] : CALL ny,ny
where n1 = ploc(r) and ny = parameter count, so we assume that
(r,CPA[Pa] : CALL njy,ns,e, sto) kot (p' ¢ e, sto')

n

We can split up the code component, so there must be a configuration on the form (", e, e", sto”) such

that
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(r,CPA[Pal,¢, sto) k1 (v e e sto) and

(r'",CALL n;,nz,e", sto") >*2 (r' ¢, e, sto')

where ki + ko = ko + 1. Using lemma A.2.2 we see that €'’ contains the actual parameters, if there are
any. Using the semantics of CALL we can rewrite the last computation.

(r" ,CPx [Pr]: CDy [Dv] : CDA[Da] : CS[S] : RETURN, ", sto") pk2

(r', e, e, sto')

This sequence can also be split up, so there must be a configuration on the form (r'” e, e, sto'"'), such
that

(r'",CPx[Pr],e", sto") ks (r!" ¢ e sto"") and

(r'".CDy [Dy] : CD4 [Da] : CS[S] : RETURN, e, sto’") bk4 (', ¢, e, st0’)

where ks + k4 = ks. Using lemma A.2.1 we see that €’ = e and that sto’' = sto’’. Again we can split up
the code component, so there must be a configuration on the form (r*, e, e*, sto*) such that

(r',CDy [Dy], e, sty b5 (rd e, e, sto) and

(r*,CD4 [D4] : CS[S] : RETURN, e, sto*) oFs (r/, ¢, e, sto')

where ks + k¢ = k3. Using lemma A.1.5 we see that e* = e/ = €. Again we can split up the code

component, so there must be a configuration on the form (r®,e, e, sto®) such that

<r4, CD4 [Da], e, sto4> pk7 <r5, €, €5, sto5> and

(r®,CS[S] : RETURN, €%, sto®) k8 (r/ ¢, e, sto')

where k7 + kg = kg. Using lemma A.1.2 we see that e® = e* = e. Once again we split up the code

component, so there must be a configuration on the form <r6, €, ef, st06> such that

<r5,CS [S] :,65,st05> ko <r6,e,66,st06> and

(r8 RETURN, 5, sto®) pk10 (r/ ¢, e, sto')
where kg + k19 = kg. We can now apply the induction hypothesis to S, which gives
<S, sto5> — sto® and e® = ¢

Using the rule [S-rulecall] we get that (r(Pa);, sto) —g sto’, which completes the proof.
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SableCC Generated File

The following is the file that SableCC uses to generate our scanner and parser along with the tree, and
the included tree walkers.

Package awl.compiler.parser;

Helpers

letter = ( [’a’..’z’] | [’A°..°2°] );
digit = [?0°..°9°];

true = ’true’; false = ’false’;
left = ’left’; right = ’right’;
up = ’up’; down = ’down’;

ht = 0x0009; 1f = 0x000a;

ff = 0x000c; cr = 0x000d; sp = * 7;
Tokens

t_world = ’world’;

t_main = ’main’;

t_rule = ’rule’;

t_turn = ’turn’;

t_anttype= ’anttype’;
t_endturn = ’endturn’;
t_process = ’process’;

t_getproperty = ’getProperty’;
t_setproperty = ’setProperty’;

t_createteam = ’createTeam’;
t_createant = ’createAnt’;
t_random = ’random’;
t_return = ’return’;
t_skip = ’skip’;

t_if = 2if’;

t_else = ’else’;

t_while = ’while’;
t_common = ’common’;
t_private = ’private’;
t_teambrain = ’teambrain’;
t_cmem = ’cmem’;

t_pmem = ’pmem’;

t_tmem = ’tmem’;

t_var = ’var’;

t_array = ’array’;
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t_eof eof?;

t_or = Jor’;

t_and = ’and’;

t_integer= ’integer’;

t_boolean ’boolean’;

t_direction ’direction’;
t_integer_literal = digit*;
t_boolean_literal = ( true | false );
t_direction_literal = (left | right | up
t_identifier = letter (letter | digit)*;
t_lpar = *(’;

t_rpar = ’)’;
t_lbrace 1{;

t_rbrace
t_lbracket

t_rbracket =

7}7;
= )[);

)]);

t_semicolon = ?;7;
t_colon HESH
t_comma = ’,’;
t_dot = 7.7,
t_assign = ’=7;
t_bang = ’!7;

t_gt = >,

t_1t = <73

t_eq 7==7;

t_ne 9 1=1)
t_le

t_ge
t_plus
t_minus = ’-7;

t_star Tk

t_slash = ?/?;

t_newline = cr | 1f | cr 1f;
t_whitespace = (sp | ht | £f)*;
t_comment = ’#° (digit | letter |
Ignored Tokens

t_newline, t_whitespace, t_comment;

r1g="?
I>=2,
)+);

7)*.

s

Productions

/* Program */

program = world;

main t_main t_lbrace team_declarationx

| down);

variable_init* array_init* commands t_rbrace;

world = t_world t_lpar [size]:t_integer_literal

[commal] :t_comma [ants]:t_integer_literal

[comma2] :t_comma [foods]:t_integer_literal t_rpar t_lbrace
common_decl* teambrain_decl* private_declx*
ntb_declaration* tb_declaration* ant_type_declarationx*

main

t_rbrace;

/* Commands*/
commands = commandx;
command =

{assign} t_identifier t_assign expression t_semicolon |
{rulecall} t_identifier t_lpar actual_parm_list

t_rpar t_semicolon |
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{arrayassign} t_identifier t_lbracket[index]:expression
t_rbracket t_assign [value]:expression t_semicolon |
{if} t_if t_lpar [condition]:expression t_rpar
[lbracel]:t_lbrace [com]:commands [rbracel]:t_rbrace
t_else [lbrace2]:t_lbrace

[else_com] : commands [rbrace2]:t_rbrace |
{while} t_while t_lpar expression

t_rpar t_lbrace commands t_rbrace |

{endturn} t_endturn t_identifier

t_lpar actual_parm_list t_rpar t_semicolon |
{return} t_return expression t_semicolon |
{skip} t_skip t_semicolon |

{cmem} t_cmem t_identifier

t_assign expression t_semicolon |

{tmem} t_tmem t_identifier

t_assign expression t_semicolon |

{pmem} t_pmem t_identifier t_assign expression
t_semicolon |

{process} t_process t_lpar [team]:expression
[commal] :t_comma [ant]:expression [comma2] :t_comma
t_identifier t_rpar t_semicolon |

{setproperty} t_setproperty t_lpar

[index] :expression t_comma [value]:expression
t_rpar t_semicolon |

{createant} t_createant t_lpar

expression t_rpar t_semicolon;

/* Memory */

common_decl = t_common variable_init;
teambrain_decl = t_teambrain
variable_declaration t_semicolon;

private_decl = t_private

variable_declaration t_semicolon;

/* Declarations*/

ntb_declaration =

{noreturn} ntb_declaration_noreturn |

{return} ntb_declaration_return;
ntb_declaration_noreturn = t_rule t_identifier
t_lpar formal_parm_list t_rpar t_lbrace
variable_init* array_init* commands t_rbrace;
ntb_declaration_return = t_rule t_identifier
t_lpar formal_parm_list t_rpar t_colon
simple_type t_lbrace variable_init*

array_init* commands t_rbrace;

tb_declaration = t_turn t_identifier t_lpar
formal_parm_list t_rpar t_lbrace variable_initx*
array_init* commands t_rbrace;

return_type = t_colon simple_type;

formal_parm = variable_declaration t_semicolon;
formal_parm_list = formal_parms;

actual_parm = expression t_semicolon;
actual_parm_list = actual_parmx;
ant_type_declaration = t_anttype t_identifier
t_lbrace variable_init* array_init* commands t_rbrace;
team_declaration = t_createteam t_lpar
t_identifier t_rpar t_semicolon;
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/* Variable Declarations*/

variable_init = variable_declaration

t_assign expression t_semicolon;

array_init = array_declaration t_assign expression
t_semicolon;

variable_declaration = t_var t_identifier

t_colon simple_type;

array_declaration = t_array t_identifier
t_lbracket t_integer_literal t_rbracket t_colon simple_type;
simple_type =

{integer} t_integer |

{boolean} t_boolean |

{direction} t_direction;

/* Expressions*/

primary_expression =

{par} t_lpar expression t_rpar |

{constant} literal |

{identifier} t_identifier |

{array} t_identifier t_lbracket expression t_rbracket |
{function} t_identifier t_lpar actual_parm_list t_rpar |
{cmem_identifier} t_cmem t_identifier |
{tmem_identifier} t_tmem t_identifier |
{pmem_identifier} t_pmem t_identifier |
{getproperty} t_getproperty t_lpar expression t_rpar |
{random} t_random t_lpar expression t_rpar;
expression = or_expression;

or_expression =

{or} and_expression t_or or_expression

{bubble} and_expression;

and_expression =

{and} eq_expression t_and and_expression

{bubble} eq_expression;

eq_expression =

{equals} rel_expression t_eq eq_expression |
{notequals} rel_expression t_ne eq_expression |
{bubble} rel_expression;

rel_expression =

{greater} add_expression t_gt rel_expression |
{lower} add_expression t_1t rel_expression |
{greaterequals} add_expression t_ge rel_expression |
{lowerequals} add_expression t_le rel_expression |
{bubble} add_expression;

add_expression =

{plus} mult_expression t_plus add_expression |
{minus} mult_expression t_minus add_expression |
{bubble} mult_expression;

mult_expression =

{mult} unary_expression t_star mult_expression |
{div} unary_expression t_slash mult_expression |
{bubble} unary_expression;

unary_expression =

{minus} t_minus primary_expression |

{bang} t_bang primary_expression |

{bubble} primary_expression;

/* Literalx/
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APPENDIX B. SABLECC GENERATED FILE

literal =

{boolean} t_boolean_literal
{integer} t_integer_literal
{direction} t_direction_literal;
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