
AWLAnt War Language

Group E2-208, DAT2Aalborg UniversityMay 30th, 2003

2

Ant War LanguageWritten byTim Boesen,Dennis Kjærulff Pedersen,Thomas Pryds Lauritsen,Jakob Rutkowski Olesen,Carl Christian Sloth AndersenOn the semesterDAT2 for the ourseSS, Syntax & SemantisDuring the period ofFebruary 3rd to May 30th, 2003
SynopsisIn this report we develop the programming language AWL (Ant War Language).We de�ne the syntax for the language and use it as a basis for the de�nition of the operational semantis.Next we de�ne the abstrat mahine AWLAM and the operational semantis for its instrutions.The report then proeeds to prove the orretness of AWL by using indution in the length of transitionsand indution on the shape of the derivation tree.

3

4

PrefaeThis report is written by projet group E2-208 on DAT 2 at Department of Computer Siene at AalborgUniversity during the spring semester of 2003. The report douments the development of a programminglanguage made spei�ally for the game Ant War.Thanks to Laurynas Speiys for supervising the projet, and to Hans Hüttel for helping us.

Tim BoesenDennis PedersenChristian AndersenJakob OlesenThomas Lauritsen

5

6

Contents
1 Introdution 111.1 Problem Area . 111.2 Solution to the Problem . 111.3 Outline of the projet . 121.4 Notation . 131.4.1 Total and partial funtion spae . 131.4.2 Values . 131.4.3 States . 131.5 Summary . 132 Syntax 142.1 World . 142.2 Memory . 142.3 Rules . 152.4 Commands . 152.5 Parameters . 162.6 Ant Type Delarations . 162.7 Team Delarations . 172.8 Variable Delarations . 172.9 Expressions . 172.10 Various . 182.11 Summary . 183 Operational Semantis for AWL 213.1 Big Step Semantis . 213.2 Abstrat Syntax . 223.2.1 Syntati Categories . 223.2.2 Construts for the Syntatial Categories . 233.3 Environment . 233.3.1 Storage Struture . 247

CONTENTS CONTENTS3.3.2 Variable Environment . 263.3.3 Proedure Environment . 263.3.4 Literal Funtions . 273.3.5 Other Funtions . 273.4 Transition Systems . 283.4.1 Arithmeti Expressions . 283.4.2 Boolean Expressions . 313.4.3 Diretion Expressions . 333.4.4 Variable Delarations . 353.4.5 Array Delarations . 363.4.6 Rule Delarations . 373.4.7 Turn and Ant Type Delarations . 383.4.8 Common Memory Delarations . 383.4.9 Team Memory Delarations . 393.4.10 Private Memory Delarations . 403.4.11 Commands . 403.4.12 Formal and Atual Parameters . 443.4.13 Team Delaration . 443.4.14 World . 463.5 Standard Environment . 473.6 Derivation Tree . 473.7 Summary . 484 AWLAM 494.1 De�nition of AWLAM . 494.1.1 Notation and De�nitions . 504.1.2 Instrution Set of AWLAM . 524.2 Operational Semantis of AWLAM . 534.3 Program Example . 574.4 Summary . 585 Code Generation 605.1 Protools . 605.2 Funtions . 615.3 Code Generation . 625.3.1 Arithmeti Expressions . 625.3.2 Boolean Expressions . 645.3.3 Diretion Expressions . 658

CONTENTS CONTENTS5.3.4 Variable Delarations . 665.3.5 Array Delarations . 665.3.6 Ant Type Delarations . 665.3.7 Rule Delarations . 675.3.8 Turn Delarations . 675.3.9 Team Delarations . 685.3.10 Common Memory Delarations . 685.3.11 Teambrain and Private Memory Delarations . 695.3.12 Formal and Atual Parameters . 705.3.13 World . 705.3.14 Commands . 715.4 Summary . 726 Provable Corret Implementation 736.1 Corretness . 736.2 Proof Tehniques . 736.3 Meaning of Commands . 746.4 Notation . 756.5 Variable Delarations . 756.6 Array Delarations . 766.7 Arithmeti Expressions . 776.8 Commands . 796.9 Summary . 817 Implementation 847.1 Sanning and Parsing . 847.2 Identi�ation and Type Cheking . 847.3 Code Generation . 867.4 AWLAM Implementation . 867.4.1 The Evaluation Stak . 867.4.2 Registers . 867.4.3 Memory . 877.4.4 Interpretation . 877.5 Sreenshots . 887.6 Summary . 898 Conlusion 909

CONTENTS CONTENTSA Provable Corret implementation 94A.1 Variable Delarations . 94A.1.1 Variables . 94A.1.2 Arrays . 95A.1.3 Common Memory . 96A.1.4 Teambrain Memory . 97A.1.5 Private Memory . 98A.2 Parameters . 99A.2.1 Formal . 99A.2.2 Atual . 100A.3 Expressions . 101A.3.1 Arithmeti . 101A.3.2 Boolean . 106A.3.3 Diretion . 109A.4 Commands . 109B SableCC Generated File 121

10

Chapter 1IntrodutionIn this hapter we will start out by giving a full desription of the problem area. We will on basis of thisdesription, write the problem statement, in whih we outline the problems in key sentenes. Followingthis, we will desribe how we will solve the problems, and give an example o� what the produt of thisrapport ould be used for. We will summarize this with a few key sentenes, whih we onsider to be thegoal of the projet. We will �nish this hapter o� by desribing the layout of the report, and desribingsome of the notation used throughout the report.1.1 Problem AreaThere is a Danish programming game alled Myrekrig (Ant war)1. The onept is that people programan ant algorithm (From now on just alled an ant) in a programming language (originally C), adhering toa set of prede�ned rules. To determine the best algorithm, two or more ants will be run in a simulationengine, to determine whih algorithm is the best.As suh C is just �ne for the task, but there are several issues whih justify designing a speial pur-pose language for the simulations. First of all, C has a lot of funtionality, whih is not neededin designing an ant. This an be quite overwhelming for the unexperiened programmer. Further-more it would be nie to have a higher level of abstration, than C provides. For example, it wouldbe more intuitive to read and write ommands like walk(LEFT) for moving an ant to the left, orif (examine(RIGHT)) = FOOD then MoveAnt(RIGHT) for moving an ant to the right if it sees food.Designing a new language enables the designer to inlude only the important language onstrutions, andit is also possible to design a syntax whih supports the underlying onept of the game.The problem in key sentenes is:� At present time there is no spei� language for reating a game of antwar� Existing programming languages are often very omplex, and does not provide onstruts spei�allyfor what will be required when reating a game of ant war.1.2 Solution to the ProblemThe solution to the problem is to reate a speial purpose programming language spei�ally for AntWar. We will all this language AWL (Ant War Language).Here we will give a desription of how a game of ant wars ould look like using AWL, we will highlightertain terms, that will be used throughout the report, the �rst time they appear.1The home-site for myrekrig is: http://www.myrekrig.dk/11

1.3. OUTLINE OF THE PROJECT CHAPTER 1. INTRODUCTIONWe de�ne a world onsisting of a 2D-board of n�n �elds/squares, in whih teams an exist. Eah teamwill onsist of a number of ants. The team owners will de�ne algorithms for their teams of ants and onethe game is started, time will show who has the best algorithm. On their own hands, the ants will ventureout into the world, gather food, and bring it bak to their respetive bases and in exhange get anotherant. The size of the world, the maximum number of ants and the number of food piees that exist in asingle exeution of the program is de�ned by the programmer. In the world the programmer an de�nesome ommonmemorywhih all teams an aess and modify if they so hoose. Furthermore eah teamwill have some team memory whih all ants on the team an aess but whih ants of other teams annotaess. Finally eah ant has a pr/home/tim/uni/awlvs/awl/dos/awl_main.psivate memorywhih other ants annot aess. It is now up to the programmer to de�ne the world as he sees �t, thisould inlude making sure that if an ant wanders out over the side of the de�ned board it will �magially�re-appear on the other side of the board. The programmer also de�nes how the game should end, ifindeed he wants it to end and not run �forever�.Below we will, in key sentenes, desribe what the programming language must provide:� AWL has to ontain high level language onstruts, suh as in C.� AWL has to provide spei� onstruts for the programmer, so that rules suh as walk(LEFT)areeasy to reate.� AWL has to provide a onstrut to allow the programmer to move the fous from one ant and teamto another ant and team� AWL has to provide some �ant memory� whih di�er in sope.� AWL has to provide a onstrut for reating teams.� AWL has to ompile to an abstrat mahine, whih we will all AWLAM(AWL Abstrat Mahine).The goal of this projet will then be to:� De�ne the grammar of the high level language AWL, using Bakus Naur Form(BNF)� De�ne an operational big step semanti for AWL2� De�ne the abstrat mahine AWLAM and have the AWL ompile to this.� Prove that the translated ode is atually equivalent with the original AWL ode.1.3 Outline of the projetThe projet is divided into eight hapters, eah overing their own topi of the projet. This hapter isan introdution to the projet. Chapter 2 is dealing with the syntax of our programming language, alledAWL. We will desribe the grammar of AWL, by the BNF notation, and will go into detail with whateah single syntati element does. Further on we will give an explanation of why the syntax is designedthe way it is.Chapter 3 deals with the operational semanti of AWL. We will desribe the semanti details of AWL,and of ourse desribe it in detail. Chapter 4 gives the de�nition of the abstrat mahine AWLAM, andgive an operational semanti for this mahine as well. The abstrat mahine's instrution set will be ourtarget language, and in hapter 5 we will give the details on how the translation is atually done. Toprove that the translation of AWL to AWLAM mahine ode is orret we will, in hapter 6, give proofof orretness for the translation. Finally we will desribe the atual implementation of the AWLAMinterpreter in hapter 7. In eah of the hapters 1 through 7 there will be a summary whih will serve asa sub onlusion for the hapter. Chapter 8 will ontain the overall onlusion for the projet.2Operational big step semantis are also know as �natural semantis�.12

CHAPTER 1. INTRODUCTION 1.4. NOTATIONBesides that, the projet ontains an appendix with some of the proofs from hapter 6, and an appendixshowing some of the details on the AWL to AWLAM ompiler. There will also be a list on the literatureused in the projet.1.4 NotationIn this report we will assume that the reader is familiar with basi set theory, though, we do use notationsnot normally onsidered part of basi set theory. Generally we use the notation of [1℄ as this has beenthe literature of our studies. In this setion, the notation used throughout this report is brie�y explainedand examples are shown. However, at some points we might use a notation not disussed here. Thisis primarily the ase when a notation is only used in a small part of the report. In these ases we willshortly address the notation in the beginning of the hapter or setion in whih it is used.1.4.1 Total and partial funtion spaeGiven the sets A and B, the notation A! B desribes the set of funtions from A to B. Any element inthat set is therefore a funtion that takes something from the set A and returns something from the setB. Suh a funtion f is written as f : A! B (or as f 2 A! B). Therefore, Env = Var ! Lo desribesthat the set Env onsists of elements, where eah element is a funtion from Var to Lo.Referring toenvironments and loations as in the example above, it would, however, be more orret written asEnv = Var ,! Lo. Var ,! Lo indiates that there is not neessarily an element of Lo de�ned for everyelement of Var . We all the elements of Var ,! Lo partial funtions3.1.4.2 ValuesThroughout the report we will be using the following notation regarding values of ertain types.z 2 Z (Numbers)b 2 Bool (Booleans)d 2 Dir (Diretions)v 2 Z[Bool[Dir (Union of numbers, booleans and diretions)1.4.3 StatesA state s is a (partial) funtion, desribed as in setion 1.4.1. Also it might be represented as [a 7! 4; b 7! 3; 7! 2℄whih means the state where the variable a maps to 4, b maps to 3, and maps to 2 (or a = 4, b = 3,and = 2). Often we use this notation for showing hanges in a state. Consider the state s above. If wewant to refer to a new state s0 that is equal to s, exept that b = 5, we will desribe s0 as s [b 7! 5℄ (sexept that b maps to 5).1.5 SummaryIn this hapter we have desribed the problem that this projet aims to solve. Furthermore we have listedsome demands that AWL must adhere to, and some general demands for the projet. Following this wehave desribed the outline of the report and desribed some notations used trough-out the report.3Another notation for this is V ar * Lo, but we will not use it in this report.13

Chapter 2SyntaxIn this hapter we de�ne the grammar for AWL expressed in BNF notation (Bakus Naur Form). Thegrammar should make it easy for the programmer to understand the onepts of AWL, and it shouldlarify distintions between onstruts whih are semantially di�erent.The grammar has been divided into intuitive sub-ategories to ease the reading and understanding, eahwith its own heading. It should however, be seen as a whole grammar. On the right side of eah rulethere is a ombination of letter(s) and number(s) in parentheses. This is only meant as an easy refereneto the individual rules, and are not part of the grammar itself.2.1 WorldThese rules desribe the general program onstrution. (P1) shows that an AWL program onsists of aworld. (P2) tells us that the world is onstruted by three integer literal parameters and by de�ning thememory, whih will be aessible for the ants. Also a world ontains delarations of rules and ant typesand �nally a main setion. The three integer literals are used in the initialization of the world and tellsus the size of the world, the maximum number of ants there an be on eah team and the maximumamount of food in the world. (P3) desribes the onstrution of main, whih onsists of delarations andommands. Program ::= World (P1)World ::= world(IntLiteral ; Intliteral ; IntLiteral) (P2)fMemory NTBRuleDels TBRuleDels AntTypeDels MaingMain ::= mainfTeamDels VarInits ArrayInits Commandsg (P3)The basi idea is that a program should be divided into some logial parts. First of all we want toseparate the ants from the world, so that they an not aess everything. This has been enfored throughthe memory and rule onepts. The only data available to the ant (besides itself) is the ant memory, andthe only methods available to the ant are the ones delared as rules.2.2 MemoryThere are three di�erent sopes when delaring memory for the ants. A piee of memory an be eitherprivate for eah ant, private for the team or ommon to all ants on all teams. They have to be delared ina spei� order as seen in (M1). Common memory is initialized when delared, so that the programmeran give ants aess to some ommon attributes like worldsize. Team and private memory are only14

CHAPTER 2. SYNTAX 2.3. RULESdelared, and it is up to the ants what they put in those variables. The memory de�ned is also persistent,this means that it will be saved from turn to turn1.Memory ::= CommonDels Teambraindels PrivateDels (M1)CommonDels ::= ommonVarInit CommonDels j � (M2)TeambrainDels ::= teambrainVarDel TeambrainDels j � (M3)PrivateDels ::= privateVarDel PrivateDels j � (M4)This onstrution has been inluded to be able to ontrol whih data is available to the ant and whihis not. It should be possible for the world onstrutor to de�ne how muh memory eah team shouldhave aess to. There will be a basis for di�erene in the behavior of the ants if they have aess to anunlimited number of integers as opposed to only one integer.2.3 RulesThe ategory Rules desribes the syntax for adding funtionality whih the ant types an use. A rule anbe one of two di�erent types: NTBRule (R1) or TBRule (R4). TB means �turn-based�, and NTB means�non turn-based�. The di�erene between the two types is that a TB rule an only be alled one everyturn for eah ant, while the NTB an be alled several times (e.g. an ant an only walk one every turn,but may do several alulations on some number). Also the NTB rule may have a return type, whih isa SimpleType. Both rule types an take parameters, and have their ode embraed in urly brakets.NTBRuleDels ::= NTBRuleDel NTBRuleDels j � (R1)NTBRuleDel ::= rule Identi�er(FormalParmList) ReturnType fCommands g (R2)ReturnType ::= : SimpleType (R3)TBRuleDels ::= TBRuleDel TBRuleDels j � (R4)TBRuleDel ::= turn Identi�er(FormalParmList) fCommands g (R5)The reason for the Rule part is very similar to the memory. The world onstrutor must have some wayto ontrol that the ants do not aess funtions, whih they should not have any knowledge about. Againit is up to the world onstrutor to de�ne what should be aessible. It has been neessary to divide therules into two ategories. Some funtions ould be alled several times, and some should only be alledone. As an example it makes sense that it is only possible to all the walk ommand one for eah turn.But of ourse it is possible for the world implementor to speify otherwise.2.4 CommandsThis part of the grammar desribes the basi ommands in AWL. (C1) shows that ommands are either asingle Command, or a Command followed by several other Commands. The �rst ommand is the assignommand (C2), whih is used to assign some value to an existing variable. The mem ommands (C3) areused for assigning values to the memory variables of the ants. There is one ommand for eah memorytype, whih is ommon, team and private. These ommands are used in the ant types to aess antmemory variables. The (C4) ommand is for assigning a value to an array. The loation in the array isspei�ed by the expression inside the square brakets. (C5) is a all to a delared rule with a parameterlist. Rules (C6) and (C7) are general onstruts for seletion and iteration: the if-else seletion, and thewhile loop.Calling a TBRule and alling a NTBRule is semantially di�erent (sine a TBRule will end a turn, anda NTBRule will not). Beause of this, it should not be possible to onfuse a all to a TBRule all with a1This is a di�erene from memory delared by the team programmer inside the ant spei�ation in that the latter is notpersistent. 15

2.5. PARAMETERS CHAPTER 2. SYNTAXall to a NTBRule (or the other way around) in the syntax of AWL. Therefore a all to a TBRule musthave the pre�x endturn. The return ommand is used to return a value from a rule. Skip does nothingbut to skip, whih means: nothing.The ommand proess will proess one spei� ant from one spei� team using a given ant type. A all toproess will normally return when a TBRule is alled with endturn. setProperty takes two expressions,storage loation and assign value). The ommand manipulates diretly with memory, whih means thatthe programmer potentially has aess to everything.Commands ::= Command Commands j � (C1)Command ::= Identi�er = Expr ; (C2)j mem Identi�er = Expr ; j tmem Identi�er = Expr ; (C3)j pmem Identi�er = Expr ;j Identi�er [Expr ℄ = Expr ; (C4)j Identi�er (AtParmList) ; (C5)j if(Expr)fCommandsgelsefCommandsg (C6)j while(Expr)fCommandsg (C7)j endturn Identi�er (AtParmList) ; (C8)j return Expr ; (C9)j skip ; (C10)j proess(Expr ;Expr ;Identi�er) ; (C11)j setProperty(Expr ;Expr) ; (C12)Most of these onstruts are quite similar to those of other existing languages, while some of the onstrutsare unique to AWL. Setion xxx in hapter xxx desribes how the setProperty ommand an be usefulwhen implementing a standard environment.2.5 ParametersThis ategory desribes the way parameters should be delared and used in rules. One part is thedelaration of the formal parameters (PF2), whih spei�es the type of parameter required in a funtion,and the other is the atual parameters (PA4), whih are the parameters atually used as input to a rule,when it is exeuted. All atual parameters are expressions, and expressions are explained a few ategoriesbelow. FormalParmList ::= FormalParm FormalParmList j � (PF1)FormalParm ::= VarDel ; (PF2)AtParmList ::= AtParm AtParmList j � (PA3)AtParm ::= Expr ; (PA4)The reason we need these onstrut is to enable that rules an have arguments as input.2.6 Ant Type DelarationsThe AntType ategory desribes the syntax for reating an AntType, i.e. a �rae�. The delaration ofan ant an be a single delaration or may onsist of several delarations one after another. Eah antdelaration must onsist of the keyword anttype followed by an identi�er, whih is the name of the type.Inside urly brakets the ommands of the delared anttype will be used.AntTypeDels ::= AntTypeDel AntTypeDels j � (AT1)AntTypeDel ::= anttype IdentifierfCommandsg (AT2)16

CHAPTER 2. SYNTAX 2.7. TEAM DECLARATIONSWith the separation of the world and the anttypes it is possible to hange ants without atually hangingmuh in the world. Eah anttype is de�ned as a sort of proedure. Though it is quite di�erent from therules, and it makes it possible to easily see the di�erene of an ant and a rule, and thereby it helps us toseparate the ants from the rules.2.7 Team DelarationsA team delaration (T2) de�nes how a team is initialized. The reateTeam keyword is followed by anidenti�er signifying the anttype, inlosed in brakets. A team delaration an be single delaration orseveral delarations (T1). TeamDels ::= TeamDel TeamDels j � (T1)TeamDel ::= reateTeam(Identi�er) ; (T2)Eah team is as said, of a ertain anttype, and eah team also have aess to some memory, whih isommon memory and team memory.2.8 Variable DelarationsThe ategory variable delarations overs variable initialization, variable delarations, array initializationsand array delarations. Variable initializations (V1) an be a single initialization or several initializations.An initialization (V2) onsists of a delaration and an assignment. Eah variable delaration (V3) mustme pre�xed with the keyword var and have a name and a simpletype (V7). The Array initialization anddelaration is done muh the same way, exept that the keyword array is used.VarInits ::= VarInit VarInits j � (V1)VarInit ::= VarDel = Expr ; (V2)VarDel ::= var Identi�er : SimpleType (V3)ArrayInits ::= ArrayInit ArrayInits j � (V4)ArrayInit ::= ArrayDe=Expr ; (V5)ArrayDe ::= array Identi�er : SimpleType (V6)SimpleType ::= integer j boolean j diretion (V7)These are standard delarations whih is found in many programming languages suh as C and Java.2.9 ExpressionsThese rules show how expressions are made. A primary expression an be an expression in parentheses,a literal, a referene to an array element, a rule all or a referene to a ant memory variable (E1). It analso be one of the onstruts getProperty or random. An expression an be an arithmeti, a relationalor a boolean expression. Sine the operators have di�erent preedene, they have been organized so thatarithmeti expressions will be evaluated �rst, then relational expressions and �nally boolean expression.17

2.10. VARIOUS CHAPTER 2. SYNTAXPrimaryExpr ::= (Expr) j Literal (E1)j Identi�er [Expr ℄ j Identi�er (AtParmList)j mem Identi�er j tmem Identi�er j pmem Identi�erj getProperty(Expr)j random(Expr)Expr ::= OrExpr (E2)OrExpr ::= OrExpr orAndExpr jAndExpr (E3)AndExpr ::= AndExpr and EqualExpr j EqualExpr (E4)EqualExpr ::= EqualExpr EqualOperator RelationalExpr j RelationalExpr (E5)EqualOperator ::= = j ! = (E6)RelationalExpr ::= RelationalExpr RelationalOperator AddExpr jAddExpr (E7)RelationalOperator ::= < j> j<= j>= (E8)AddExpr ::= AddExpr AddOperator MultExpr jMultExpr (E9)AddOperator ::= + j � (E10)MultExpr ::= MultExpr MultOperator UnaryExpr jUnaryExpr (E11)MultOperator ::= � j = (E12)UnaryExpr ::= UnaryOperator PrimaryExpression j PrimaryExpression (E13)UnaryOperator ::= � j ! (E14)In general the expression part is quite similar to other languages. The only thing that ould be di�erentis the preedene rules. We have hosen to use standard evaluation for arithmeti operators, and thesame for boolean.The reason for this is that most people are already familiar with these preedene rules.The random expression is introdued to AWL, sine the programmer will need a way to make his antstake di�erent hoies. Otherwise all ants dediated to a given ant type would follow the exat samepattern. getProperty is the ounterpart to the ommand setProperty. It gives diret aess to fethvalues from any storage loation, and an be very useful when implementing a standard environment.2.10 VariousThese rules desribe the general types in AWL. An integer literal onsist of an amount of digits. Anidenti�er always begins with a letter and may be followed by an arbitrary number of letters and digits.A letter is an element in the English alphabet, and a number is a sequene of digits, whih might be a�oating point number. The Diretion literal is inluded to be be able to speify a diretion.Literal ::= BoolLiteral j IntLiteral jDiretionLiteral (V1)BoolLiteral ::= true j false (V2)IntLiteral ::= Digit IntLiteral j � (V3)DiretionLiteral ::= left j right j up j down j enter (V4)Identi�er ::= Letter j Identi�er Letter j Identi�er IntLiteral (V5)Letter ::= ajbjjdjejf jgjhjijjjkjljmjnjojpjqjrjsjtjujvjwjxjyjz (V6)j AjBjCjDjEjFjGjHjIjJjKjLjMjNjOjPjQjRjSjTjUjVjWjXjYjZDigit ::= 0j1j2j3j4j5j6j7j8j9 (V7)We have deided to inlude some of the most ommon types. Besides that we have inluded a Diretionliteral, whih will be useful, and more intuitive to use when you for example want to speify, the diretionof an ant, rather than using numbers.Table 2.1 on the faing page show how a program an be build from the syntax just de�ned. The leftolumn shows the ode, while the right olumn ontains some omments on what is happening.2.11 SummaryIn this hapter we have de�ned the grammar for AWL. We have tried to de�ne a syntax, whih is simplerthan that of other existing high level languages. On the other hand, we also wanted to use some onstruts18

CHAPTER 2. SYNTAX 2.11. SUMMARY

world{500,200,100){ World reationA new world is reated with the size 500x500. Eah team will havea maximum of 200 ants, and there will be a maximum of100 piees of food in the world at any given time.ommon var x : integer = 0; Ant memory is delaredteambrain var tx : integer = 0; Common variables are stored one plae in memory. Teambrainprivate var px : integer = 0; variables are stored one for every reated team, and private variablesare stored one for eah ant.rule myRule(var d : integer){ The rule myRule is delaredvar x : integer = 0; The rule name is assoiated with the formal parameters,r = r + d; the delarations and the ommands. The urrent variable environment} is also stored with the rule (stati variable binding).anttype myAntType{ The ant type myAntType is delaredvar y : integer = 0; The type name is assoiated with the delarations and the ommands.r(left); The urrent variable environment is also stored with the ant type.}main{ The main setion of the program.reateTeam(team1); A new team is reated.reateAnt(team1); A ant is reated for team1.proess(team1, 0, myAntType); Ant 0 on team1 is proessed using the ant type myAntType}} End of the worldTable 2.1: Example AWL program

19

2.11. SUMMARY CHAPTER 2. SYNTAXof general purpose languages, sine users will be familiar with those. The purpose of the syntax is also tosupport the oneptual ideas in the problem area of this report - namely de�ning an ant world. ClearlyAWL have no usage besides de�ning a world of ants.The primary in�uenes from modern high level languages, suh as C and Java, are the basi variable typesand the seletion and loop onstruts. We have left out several data types, like �oating point numbers,to keep the programming language relatively simple.We have aimed at onstruting a language with some level of enapsulation. Eah ant and team willexplore the world on its own, so they are de�ned with their own sope of variables. Eah ant will onlyhave aess to delared rules, whih are de�ned by the programmer of the atual world. This has thee�et of enapsulating the ants. Sine it is not neessary to have suh enapsulation in other parts of theprogramming language, we have deided to use this solution rather than a more general onstrut.As the proess has evolved we have realized that even simple additions to the language syntax an havea huge impat on the omplexity of the language. Espeially in the operational semantis, whih is thesubjet of the next hapter.

20

Chapter 3Operational Semantis for AWLIn this hapter we will de�ne the operational semantis for AWL.De�ning the operational semantis for any programming language onsists of the following steps:� De�ning an abstrat syntax with syntati ategories and onstruts.� De�ning semantial sets and funtions.� De�ning transition systems.Operational semantis tells us how to exeute our program, and thus how it should be understood.When all this is done we will desribe how AWL an be extended to inlude a standard environment.3.1 Big Step SemantisThe semantis de�ned in this hapter is big step (or natural) semantis. This means that a wholealulation is done in one transition.We will de�ne the on�gurations for a transition system in the following manner (example):�DeVar = (DeVar � EnvV � Store) [EnvV � Storewhih means that a on�guration in the ategory DeVar onsists of one or more delarations, a variableenvironment with updated variable bindings and a store with updated storage bindings.We will use the following notation to de�ne our transitions:PremisesConlusionwhereConditionsAn example of this ould be the transition for multiplying two arithmeti expressions:envV ; sto ` ae1 !ae z1 envV ; sto ` ae2 !ae z2envV ; sto ` ae1 �ae2 !ae zwhere z = z1 � z2The above transition should be read like �ae1 multiplied with ae2 will give the result z, if ae1 evaluatesto z1 and ae2 evaluates to z2, with the ondition that z1 � z2 equals z�.21

3.2. ABSTRACT SYNTAX CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL3.2 Abstrat SyntaxThe semantis of a programming language is based on the syntax of the language. Sine we don't needto hek a program for syntatial errors at this point, we don't need the entire onrete syntax from theprevious hapter. Instead we will de�ne an abstrat syntax, whose purpose is to desribe the strutureof the di�erent syntatial onstruts. Later we an de�ne semanti rules for eah syntatial onstrut,and group them by their ategories.3.2.1 Syntati CategoriesFor eah ategory we speify a meta variable. In the ategory V ar the meta variable is x, whih meansthat when x is written in the syntatial rules, it ould be any variable in V ar.We have three di�erent kinds of literals in AWL � integer literals, boolean literals and diretion literals.n 2 IntLit (Integer literals)bl 2 BoolLit (Boolean literals)dl 2 DirLit (Diretion literals)Likewise, we have three kinds of expressions. We also de�ne the ategory exp, whih is the set of allexpressions. We will use this to shorten our syntatial rules later in this hapter.ae 2 AExpr (Arithmeti expressions)be 2 BExpr (Boolean expressions)de 2 DExpr (Diretion expressions)exp 2 AExpr [BExpr [DExpr (All expressions)Variables, rules, turns, teams and ant types are identi�ed with names in AWL,x 2 Var (Variables)r 2 RuleName (Non turn based rule names)t 2 TurnName (Turn based rule names)at 2 AntTypeName (Ant type names)and an all be delared.DV 2 DeVar (Variable delarations)DA 2 DeArray (Array delarations)DMC 2 DeMemCommon (Common Memory delarations)DMT 2 DeMemTeam (Teambrain Memory delarations)DMP 2 DeMemPrivate (Private Memory delarations)DR 2 DeRule (Non turn based rule delarations)DT 2 DeTurn (Turn based rule delarations)DTEAM 2 DeTeam (Team delarations)DAT 2 DeAntType (Ant type delarations)type 2 Type (Types)Rules and turns an have multiple parameters, so we de�ne a ategory for the formal parameters and aategory for the atual parameters.PF 2 FParm (Formal parameter list)PA 2 AParm (Atual parameter list)And last, but not least, we have the ommands and the world onstrut.S 2 Com (Commands)w 2 World (World program)22

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.3. ENVIRONMENT3.2.2 Construts for the Syntatial CategoriesIn this setion we will de�ne the struture of the elements in the syntatial ategories. The strutureof literals, variables and the names of rules, turns, ant types and teams are given in the onrete syntax,and sine those ategories have no real semanti value, we will not speify their struture again here.The interesting ategories are the ones with atual semanti value. Table 3.1 shows the struture of theonstruts for those ategories.ae ::= n j x j x[ae℄ j mem x jtmem x jpmem x j r(PA) j ae1+ae2 j ae1�ae2j ae1�ae2 j ae1=ae2 j (ae) j getProperty(ae)be ::= bl j x j x[ae℄ j mem x jtmem x jpmem x j r(PA) j ae1==ae2 j ae1<ae2j ae1>ae2 j ae1<=ae2 j ae1>=ae2 j ae1! =ae2 j be1==be2j be1! =be2 j !be j (be) j de1==de2 j de1! =de2 j getProperty(ae)de ::= dl j x j x[ae℄ j mem x jtmemx jpmem x j r(PA) j (de)j getProperty(ae)S ::= x=exp; j r(PA); j endturn t(PA);mem x = exp; j x[ae℄ = exp;j tmem x = exp; jpmem x = exp; j S1 S2 j skip;j return exp; j if(be) fS1g else fS2gj while(be) fSg j proess(ae; ae; at); j setProperty(ae; exp)DV ::= var x : type = exp;DV j �DA ::= array x[n℄ : type = exp; j �DR ::= rule r(PF) fDVDASgDR j rule r(PF) : type fDVDASgDR j �DT ::= turn t(PF) fDVDASgDT j �DAT ::= anttype at fDV DASgDAT j �DTEAM ::= reateTeam(x);DTEAM j �DMC ::= private var x : type;DMC j �DMT ::= teambrain var x : type;DMT j �DMP ::= ommonvar x : type;DMP j �PF ::= var x : type; PF j �PA ::= exp; PA j �w ::= world(z1; z2)fDMC DMT DMP DT DR DAT mainfDTEAM DV DA SggTable 3.1: Abstrat syntax for AWL3.3 EnvironmentWe will use the basis of the environment-store model1, when de�ning our environments. In short thismeans that e.g. variables bind to storage loations, and storage loations bind to values.So we have a set of loations Lo (like the memory of a normal omputer). We will all elements in thisset l. Also, we have a funtion whih, given a loation, will return a value. The values of our model arethe natural numbers Z, boolean values B and diretions D.Store = Lo ,! Z [B [DElements in Store are alled sto. Note that the relationship between Store and Lo is a partial funtion,sine not all loations need to have a value. We assume that we have an unlimited soure of storageloations.We de�ne an update notation for Store. The store sto [l 7! v℄ is the store sto0 de�ned bysto0 (l0) = � sto (l0)v if l0 6= lif l0 = l1[1, p. 86℄ 23

3.3. ENVIRONMENT CHAPTER 3. OPERATIONAL SEMANTICS FOR AWLWORLD = 0MAXANTS = 1MAXFOOD = 2TEAMCOUNT = 3CURRENTTEAM = 4CURRENTANT = 5COMMONDECLS = 6TEAMBRAINDECLS = 7PRIVATEDECLS = 8FOODBASE = 9Table 3.2: Loation onstants.ANTSIZE = ANTALLOC + sto(PRIVATEDECLS)This alulation results in the number of storage loation salloated to eah antTEAMANTSSIZE = sto(ANTCOUNT) �ANTSIZEThis alulation results in the number of storage loationsalloated to all ants on eah team.FIRSTTEAM = COMMONBASE + sto(COMMONDECLS) + sto(MAXFOOD) � 2This alulation results in the loation where the �rst team is alloated.TEAMSIZE = TEAMALLOC + sto(TEAMBRAINDECLS) +TEAMANTSIZEThis alulation results in the number of storage loationsalloated to eah team.COMMONBASE = FOODBASE + FOODCOUNT � 2This alulation results in the base storage loation ofommon memory variables.Table 3.3: Prede�ned alulations.3.3.1 Storage StrutureThe data elements of AWL has a somewhat prede�ned storage loation. The �rst setion of memory isreserved to a number of keys values, suh as the size of the ant world and the maximum number of ants.In this part of the memory we also �nd the ommon ant memory variables, and the ant food oordinates.The next setion of memory is dediated to the ant teams. Eah team have some basi desribing values,and their own opy of the delared teambrain variables. Also eah team has alloated storage for themaximum number of ants possible, and eah ant has its own opy of the delared private variables (aswell as its oordinates). Figure 3.1 shows the struture of the storage.Beause of this struture, some semanti rules need to make list of alulations. To simplify the al-ulations we de�ne loation onstants to use instead of numbers. The onstants are de�ned in table3.2.Looking at �gure 3.1 we also see that an ant has two oordinates alloated (besides the private memory),and that a team has four. We de�ne the onstant values ANTALLOC = 2 and TEAMALLOC = 4 .Even with the de�ned onstants, the alulations an get quite long. Even though eah small alulationis not ompliated, a long list of simple alulations still looks onfusing. We will therefore prede�nesome of the alulations here, and refer to them in the semanti rules. The prede�ned alulations areshown in table 3.3. To understand the alulations refer to storage struture illustrated in �gure 3.1.24

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.3. ENVIRONMENT
STARTTEAMè 18 Team - 0 - no

19 Team - 0 -nextant

20 Team - 0 - Base X

21 Team -0 - Base Y

22 Team -0-team var-0

23 Team -0-team var-1

24 Team -0-team var-j

25 Ant - 0 - X Coord

26 Ant - 0 - Y Coord

27 Ant - 0 - private var - 0

28 Ant - 0 - private var -1

29 Ant - 0 - private var - k

30 Ant - 1 - X Coord

31 Ant - 1- Y Coord

32 Ant - 1 - private var - 0

33 Ant - 1 - private var -1

34 Ant - 1 - private var - k

35 Ant - i - X Coord

36 Ant - i - Y Coord

37 Ant - i - private var - 0

38 Ant - i - private var -1

39 Ant - i - private var - k

40 Team - 1 - no

41 Team - 1 -nextant

42 Team - 1 - Base X

43 Team -1 - Base Y

44 Team -1-team var-0

45 Team -1-team var-1

46 Team -1-team var-j

WORLDè 0 World size
MAXANTSè 1 Max number of ants
MAXFOODè 2 Max pieces of food

TEAMCOUNTè 3 Number of teams
CURRENTTEAMè 4 Current team

CURRENTANTè 5 Current ant
COMMONDECLSè 6 Common variable count

TEAMDECLSè 7 Team variable count
PRIVATEDECLSè 8 Private variable count

FOODBASEè 9 food - 0 -X

10 food - 0 -Y

11 food - 1 -X

12 food - 1 -Y

13 food - l -X

14 food - l -Y
COMMONBASEè15 Common var - 0

16 Common var -1

17 Common var -i

Figure 3.1: Memory ordering with loations
25

3.3. ENVIRONMENT CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL3.3.2 Variable EnvironmentOur variable environment is a partial funtion from variables to loations (partial beause not all possiblevariable names are neessarily bound to a loation). We have to onsider arrays, whih means that weneed to keep trak of array sizes. Also in the semanti rules regarding ant memory variables, we need tostore an index number (this is elaborated in the partiular setion).There are three di�erent variable types in AWL, and this should also be stored in the variable environment.We an now de�ne the set of variable environments asEnvV = (Var ,! Type� Lo) [(Var ,! Type� Lo� Z) [(Var ,! Type� Z) [(fnext; returng ,! Lo)We introdue the elements next and return with a speial purpose in our variable environment. Theelement next is used as a pointer to the next free loation. The element return is used to store returnvalues for rules in AWL.We de�ne an update notation for EnvV. The environment envV [x 7! (type; l)℄ is the environment env0Vde�ned by env 0V (y) = � envV (y)(type; l) if y 6= xif y = xThe same notation applies for the rest of this environment as well as the rest of the environments de�nedin this report.3.3.3 Proedure EnvironmentThere are two di�erent proedure-like onstruts in AWL - rules and ant types. We will store both ofthem in the same proedure environment.Rules in AWL an be both TB (turn based) rules and NTB (non turn based) rules. Both an havemultiple parameters, but only NTB rules an return a value. Rules in AWL have stati variable bindings.Sine it is impossible to delare additional rules after initializing the main setion of a program, it ismeaningless to have stati rule bindings, so we hoose to have dynami rule bindings.An ant type is similar to a rule, exept it does not take any parameters, and it an not return any value.Like rules, ant types have stati variable bindings, dynami rule bindings.With that in mind, the de�nition of our proedure environment looks like this.EnvP = (RuleName ,! Com� FParm� EnvV �DeVar�DeArray�Type [(RuleName ,! Com� FParm� EnvV �DeVar�DeArray) [(TurnName ,! Com� FParm� EnvV �DeVar�DeArray) [(AntTypeName ,! Com� EnvV �DeVar�DeArray)For eah proedure we store the ommands, the parameters, the urrent variable environment, and thevariable and array delarations in our rule environment2. For rules with a return type, we store returntype as well.At the time of proedure delaration, only ant memory variables will have been previously delared. Thismeans that these are the only outside variables that an be aessed inside a proedure (disregarding thesetProperty ommand, whih an alter any memory loation).2We also store the delarations beause AWL does not have a nested blok struture26

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.3. ENVIRONMENT3.3.4 Literal FuntionsWe have three kinds of literals in AWL; integer literals, boolean literals and diretion literals. Sine theliterals are only syntati representations, we need a way to de�ne the meaning of a literal.We de�ne the funtion N whih, for any integer literal, returns the orresponding numeri value.N : IntLit! ZSo N [[4℄℄ = 4 where 4 is an integer literal and 4 is the numeri value 4 and so on.For boolean literals we de�ne the funtion B.B : BoolLit! Boolwhere B [[true℄℄ = tt and B [[false℄℄ = ff . So true is a syntati representation and tt is the value. The sameapplies to false and ff .Last, we have diretion literals for whih we de�ne the funtion D.D : DirLit! DirThe spei� de�nition of D is shown in the table below.DirLit Dirleft llright rrup uudown ddenter 3.3.5 Other FuntionsTo make our semanti rules as simple as possible, we de�ne di�erent funtions that we use when buildingthe rules.Our variable environment ontained the element next, whih was a pointer to the next free storageloation. However we have to update next manually, and for that we need a funtion. We de�ne thefuntion new. new : (Lo [Lo�Z! Lo)and more spei� new (l) = l + 1 and new (l ; z) = l + zAnother funtion whih is used is the ran funtion. This funtion takes a natural number greater thanzero and returns a value in the range 0 to the inoming number minus one. The formal desription ofthis funtion is as follows. ran : Z! ZFinally we need to de�ne two funtions, whih will help us determine the base storage loation of aspei� team and a spei� ant. AWL has a well de�ned storage struture, whih means that alulationsare needed to reah these base loations. We de�ne the two funtions teamLo and antLo.27

3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWLteamLo : Z! ZantLo : Z�Z! ZWe de�ne the preise de�nition of teamLo to beteamLo(zteam) = FIRSTTEAM + zteam �TEAMSIZEand the preise de�nition of antLo to beantLo(zteam ; zant) = teamLo(zteam) + zant �ANTSIZE3.4 Transition SystemsIn this setion we will de�ne the transition systems of our operational semantis. We will de�ne onetransition system per syntatial ategory (only ategories with a semanti value). For eah system, wewill de�ne the on�gurations, the transition relation, and the end on�gurations.Eah transition system is de�ned by a 3-tuple: (� ;!;T)where � is the on�gurations (states) of the transition system, and T is the end on�gurations. ! is thetransition relation, whih de�nes how to get from one on�guration to another.The transition relation for a given transition system will be de�ned by reating a semantial rule forevery syntatial onstrut.As a last note before going through the di�erent syntatial ategories, we de�ne a semantial rule[Expression℄ that ats as a synonym for the three di�erent kinds of expressions in AWL. This means thatwhenever we write envP ; envV :sto ` exp !exp vit overs the following: envP ; envV ; sto ` ae !ae zenvP ; envV ; sto ` be !be benvP ; envV ; sto ` de !de d3.4.1 Arithmeti ExpressionsThe transition system for arithmeti expressions should evaluate arithmeti expressions to their values,whih are numbers. So we de�ne the transition system (�AExpr ;!ae ;TAExpr), where �AExpr = AExpr [Zand TAExpr = Z.Transitions are on the form envP ; envV ; sto ` ae !ae z .We de�ne !ae by the semantial rules in table 3.4.The rule [ae-add℄ shows that the syntati onstrut ae1 + ae2 will evaluate to the number z, if ae1evaluates to the number z1, and ae2 evaluates to number z2 where z = z1+z2. Subtration, multipliationand division follow the same pattern.An arithmeti expression an be a single integer literal. In that ase we use the rule [ae-lit℄, whih statesthat the integer literal n will evaluate to the number z if N [[n℄℄ = z . N was the funtion whih given aninteger literal returned the orresponding number. This rule is an axiom, sine it has no premise, and28

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS
[ae-add℄envp ; envV ; sto ` ae1 !ae z1 envp ; envV ; sto ` ae2 !ae z2envp ; envV ; sto ` ae1+ae2 !ae z where z = z1 + z2[ae-sub℄envp; envV ; sto ` ae1 !ae z1 envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1�ae2 !ae z where z = z1 � z2[ae-mult℄envp; envV ; sto ` ae1 !ae z1 envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1�ae2 !ae z where z = z1 � z2[ae-div℄envp; envV ; sto ` ae1 !ae z1 envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1=ae2 !ae z where z = z1z2Table 3.4: Semantis for arithmeti alulations

[ae-par℄envp; envV ; sto ` ae!ae z1envp; envV ; sto ` (ae) !ae z1[ae-lit℄envp; envV ; sto ` n!ae z if N [[n℄℄ = z[ae-var℄envp; envV ; sto ` x!ae z if envV (x) = (integer; l) and sto (l) = z[ae-array℄envp; envV ; sto ` x[ae℄!ae z where envp; envV ; sto ` ae!ae z00and if envV (x) = (integer; l; z0) andz = sto (l + z00) and z00 < z0 and z00 � 0[ae-ruleall℄
PF ; env0V [next 7! new (l)℄�!PF env00VenvP `
PA; env00V [next 7! new (l)℄ ; sto�!PA �env3V ; sto0�envP `
DV ; env3V ; sto0�!DV �env4V ; sto00�envP `
DA; env4V ; sto00�!DA �env5V ; sto3�envP ; env5V [return 7! l℄ `
S; sto3�! sto4envV ; sto ` r(PA) !ae zwhere l = envV (next) and z = sto4 �env5V (return)�and if envP (r) = �S ;PF ; env 0V ;DV ;DA; integer�Table 3.5: Semantis for literals, parentheses, variables, arrays and rule alls.
29

3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[ae-getProperty℄envp ; envV ; sto ` getProperty(ae) !ae zwhere envV ; sto ` ae!ae z1and z = sto (z1)Table 3.6: GetProperty for arithmeti expressions[ae-ommon-var℄envp; envV ; sto ` mem x!ae z1where envV (x) = (integer; z2) and z1 = sto (COMMONBASE + z2)[ae-team-var℄envp; envV ; sto ` tmem x!ae z1where envV (x) = (integer; z2) andz1 = sto (teamLo (sto (CURRENTTEAM)) + TEAMALLOC + z2)[ae-private-var℄envp; envV ; sto ` pmem x!ae z1where envV (x) = (integer; z2) andz1 = sto (antLo (sto (CURRENTTEAM) ; sto (CURRENTANT)) + ANTALLOC + z2)Table 3.7: Memory variables for aewould therefore be a leaf if we onstruted a derivation tree of an AWL program, whih inluded thisonstrut. The rules [ae-var℄ and [ae-array℄ are also axioms.Rule [ae-var℄ states that a variable x evaluates to the number z, if the variable is bound to storage loationl in the variable environment and l is bound to z in the storage. The rules for arrays and rule alls are alittle more ompliated, so we will desribe them more thoroughly.To evaluate the arithmeti expression x[ae℄, we �rst need to evaluate ae. Then we look up x in thevariable environment, whih returns the array type, the base storage loation and the size of the array.Sine we don't want to referene storage outside the boundaries of our array, we hek that the indexis greater than or equal to zero and smaller than or equal to the size of the array minus one (indexingstarts at zero). If this is the ase x[ae℄ evaluates to the number z. Note that if the type of the array isn'tinteger, then this rule will not apply to the expression.Only rules whih have a return type an be expressions, so the rule we are alling is bound to a spei�type. Like our semanti rule for arrays, [ae-ruleall℄ will only apply, if this rule returns an integer. If this isthe ase, we lookup the rule in the proedure environment envp (r) whih returns all the information aboutthe rule needed to exeute it (S ;PF ; env 0V ;DV ;DAinteger). First we exeute the parameter delarations(if it has any), so eah parameters get alloated a storage loation. We then use the updated variableenvironment and storage when exeuting the loal variable and array delarations. We also alloate aloation for the return value. With all this done, we exeute the ommands of the rule, whih hopefullywill put a arithmeti value in the loation alloated for the return value. The rule then evaluates to thereturn value.In table 3.6 we use getProperty(ae) to retrieve a value from the storage. The expression takes anotherarithmeti expression to look up a spei� loation in the storage. This gives the programmer aess tothe entire memory.In table 3.7 we show how to get the value from a ant memory variable. We �nd the value of a ommonmemory variable by �rst using the funtion envV (x), whih will return a type (in this ase integer) and anumber z2, whih is the relative address of x. Sine the ommon memory variables have the base addressCOMMONBASE , we add z2 to the base. We apply sto and get that z = sto (COMMONBASE + z1).The priniple is the same for [ae-team-var℄ and [ae-private-var℄ exept that we are using a di�erent basevalue. The base values are determined using the funtions teamLo and antLo de�ned in this hapter.30

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS[ae-random℄envp; envV ; sto ` random(ae) !ae zwhere envp; envV ; sto ` ae!ae z0 and z = ran(z0)Table 3.8: Random ommand[be-equals-ae-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 == ae2 !be ttwhere z1 = z2 [be-equals-ae-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 == ae2 !be ffwhere z1 6= z2[be-not-equals-ae-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1! = ae2 !be ttwhere z1 6= z2 [be-not-equals-ae-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1! = ae2 !be ffwhere z1 = z2Table 3.9: Boolean expressions for arithmeti equalityThe random ommand in table 3.8 takes an ae expression and returns a random value z. This value isfound by �rst having ae evaluated to a value z0 and then applying this value to random funtion ran.ran(z0) returns a value z where 0 � z < z0.
3.4.2 Boolean ExpressionsBoolean expressions are expressions, whih evaluate to truth/boolean values (ff or tt). So the transitionsystem for BExpr should evaluate a boolean expression to a boolean value b. We de�ne the system(�BExpr ;!be ;TBExpr), where the on�gurations �BExpr = BExpr [ftt ; ff g and the end on�gurationsTBExpr = ftt ; ff g. Transitions are on the form envp ; envV ; sto ` be 7! b.We de�ne !be by the semantial rules below. The rules are divided into smaller groups to maintain agood overview.The rules in table 3.9 de�ne how we determine if an arithmeti expression is or is not equal to anotherarithmeti expression. The rules [be-equals-ae-1℄ and [be-equals-ae-2℄ show that if we want to hekwhether ae1 and ae2 are equal to eah other, we �rst evaluate the two expressions to the numbers z1 andz2. If these numbers are equal (in a mathematial sense), then the onstrut ae1 == ae2 evaluates to tt- otherwise it evaluates to ff .In table 3.10 we perform relational arithmetis on two arithmeti expressions, ae1 and ae2. In [be-lower-than-1℄ and [be-lower-than-2℄ the two expressions are evaluated down to two values, z1 and z2. Whathappens next is that if z1 < z2, we an apply the rule [be-lower-than-1℄ and the rule will yield a tt.Otherwise we an apply the other be-lower-than rule [be-lower-than-2℄ and the value yielded is a ff . Theother three pairs of rules are very similar to [be-lower-than℄ pair in their onstrut, and will also yieldeither tt or ff . 31

3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[be-greater-than-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 > ae2 !be ttwhere z1 > z2 [be-greater-than-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ea2 !ae z2envp; envV ; sto ` ae1 > ae2 !be ffwhere z1 � z2[be-lower-than-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 < ae2 !be ttwhere z1 < z2 [be-lower-than-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 < ae2 !be ffwhere z1 � z2[be-greater-than-or-equals-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 => ae2 !be ttwhere z1 � z2 [be-greater-than-or-equals-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 => ae2 !be ffwhere z1 < z2[be-less-than-or-equals-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 =< ae2 !be ttwhere z1 � z2 [be-less-than-or-equals-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 =< ae2 !be ffwhere z1 > z2Table 3.10: Semantis for greater and lower-than onstruts[be-and-1℄envp; envV ; sto ` be1 !be ttenvp; envV ; sto ` be2 !be ttenvp; envV ; sto ` be1 and be2 !be tt [be-and-2℄envp; envV ; sto ` bei !be ffenvp; envV ; sto ` be1 and be2 !be ffwhere i 2 f1; 2g[be-or-1℄envp; envV ; sto ` be1 !be ffenvp; envV ; sto ` be2 !be ffenvp; envV ; sto ` be1 or be2 !be ff [be-or-2℄envp; envV ; sto ` bei !be ttenvp; envV ; sto ` be1 or be2 !be ttwhere i 2 f1; 2gTable 3.11: Semantis for 'and' and 'or' onstrutsThe semantial rules in table 3.11 takes two boolean expressions and ompare them and, depending onthe rule, return a tt or a ff value. In [be-and-1℄ we say that given the environments envP ; envV and astore sto, both the boolean expressions be1 and be2 will evaluate to tt, and thus yield a tt. On the otherhand, in [be-and-2℄ we state that if just one of the two expressions does not yield a tt when evaluated,then the rule will yield an ff .The rule [be-and-2℄ is atually two rules put into one by the use of i, where i is the set of values f1; 2g.This means that either be1 or be2 will be evaluated to ff . Whih one is of no onsequene for the endresult whih would, in any ase, be ff .What happens in the [be-or℄ pair is just the opposite. If either of the two boolean expressions evaluateto tt, then the rule will yield a tt.When a boolean literal bl is enountered, we an apply [be-lit℄, found in table 3.12. This applies thefuntion B[[bl ℄℄ and gets a b in return. b is either tt or ff . The desription of this an be found in setion3.3.4. 32

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS[be-lit℄envp; envV ; sto ` bl!be bif B[[bl ℄℄ = b [be-parenthesis℄envp; envV ; sto ` be!be benvp; envV ; sto ` (be) !be b[be-not-1℄envp; envV ; sto ` be!be ttenvp; envV ; sto `!be!be ff [be-not-2℄envp; envV ; sto ` be!be ffenvp; envV ; sto `!be!be ttTable 3.12: Semantis for boolean literals, parentheses and negations[be-var℄envp; envV ; sto ` x!be b if envV (x) = l and sto (l) = b[be-array℄envp; envV ; sto ` x[ae℄!ae b where envP ; envV ; sto ` ae!ae z00and if envV (x) = (boolean; l; z0) and b = sto (l + z00)0and z00 < z0 and z00 � 0[be-ruleall℄
PF ; env0V [next 7! new (l)℄�!PF env00VenvP `
PA; env00V [next 7! new (l)℄ ; sto�!PA �env3V ; sto0�envP `
DV ; env3V ; sto0�!DV �env4V ; sto00�envP `
DA; env4V ; sto00�!DA �env5V ; sto3�envP ; env5V [return 7! l℄ `
S; sto3�! sto4envV ; sto ` r(PA) !be bwhere l = envV (next) and b = sto4 �env5V (return)�and if envR (r) = �S ;PF ; env 0V ;DV ;DA; integer�Table 3.13: Semantis for variable, array and rule allsWhat happens in [be-parenthesis℄ is that the parenthesis are removed and the boolean expression be1 isevaluated to a b. The two 'not' rules [be-not-1℄ and [be-not-2℄ are very similar. They take a booleanexpression be, evaluate it to a b and then reverse the result, so that tt beomes ff and vie versa.Assuming an environment envV and a store sto we an, in the rule [be-var℄ in table 3.13, �nd the booleanb of a variable x, if the variable x is bound to the storage loation l (envV (x) = l) and l is bound to b inthe storage (sto (l) = b) .The other two rules in table 3.13 are similar to the ones in table 3.5.In tables 3.14 and 3.15 rules resembling those in table 3.9 are de�ned. What makes them di�erent is thetypes of expressions that are ompared. In [be-equals(be)-1℄ and [be-equals(be)-2℄ we have two booleanexpressions be1 and be2. These will � given an instane of the variable environment envV , the proedureenvironment envP and an instane of the store sto � evaluate to b1 and b2. b1 and b2 are then omparedand the result is returned. In [be-not-equals(be)-1℄ and [be-not-equals(be)-2℄ the same happens, exeptthat the result is negated.Table 3.16 is idential to 3.6, exept that it evaluates to a boolean value. The same applies to table 3.17whih shows the semanti rules of aessing boolean ant memory variables.3.4.3 Diretion ExpressionsDiretional expressions resemble boolean expressions in that they an only result in a �nite amount ofvalues. These values are (; ll; rr; uu; dd). The transition system is de�ned as (�DExpr ;!de ;TDExpr),where the on�gurations �DExpr = DExpr [f; ll ; rr ; uu; ddg , and the end on�guration TDExpr is theset f; ll; rr; uu; ddg. We de�ne our transitions to have the form envP ; envV ; sto ` de 7! d, whih means33

3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[be-equals(be)-1℄envp; envV ; sto ` be1 !be b1envp; envV ; sto ` be2 !be b2envp; envV ; sto ` be1 == be2 !be ttwhere b1 = b2 [be-equals(be)-2℄envp; envV ; sto ` be1 !be b1envp; envV ; sto ` be2 !be b2envp; envV ; sto ` be1 == be2 !be ffwhere b1 6= b2[be-not-equals(be)-1℄envp; envV ; sto ` be1 !be b1envp; envV ; sto ` be2 !be b2envp; envV ; sto ` be1! = be2 !be ttwhere b1 6= b2 [be-not-equals(be)-2℄envp; envV ; sto ` be1 !be b1envp; envV ; sto ` be2 !be b2envp; envV ; sto ` be1! = be2ffwhere b1 = b2Table 3.14: Semantis for equality of boolean expressions[be-equals(de)-1℄envp; envV ; sto ` de1 !de d1envp; envV ; sto ` de2 !de d2envp; envV ; sto ` de1 == de2 !be ttwhere d1 = d2 [be-equals(de)-2℄envp; envV ; sto ` de1 !de d1envp; envV ; sto ` de2 !de d2envp; envV ; sto ` de1 == de2 !be ffwhere d1 6= d2[be-not-equals(de)-1℄envp; envV ; sto ` de1 !de d1envp; envV ; sto ` ae2 !de d2envp; envV ; sto ` de1! = de2 !be ttwhere d1 6= d2 [be-not-equals(de)-2℄envp; envV ; sto ` de1 !de d1envp; envV ; sto ` ae2 !de d2envp; envV ; sto ` de1! = de2 !be ffwhere d1 = d2Table 3.15: Semantis for equality of diretion expressions[be-getProperty℄envp; envV ; sto ` getProperty(ae) !ae bwhere envP ; envV ; sto ` ae!ae z and b = sto (z)Table 3.16: getProperty for boolean expression[be-ommon-var℄envp; envV ; sto ` mem x!ae bwhere (integer; z) = envV (x) and b = sto (COMMONBASE + z)[be-team-var℄envp; envV ; sto ` tmem x!ae bwhere (integer; z) = envV (x) andb = sto (teamLo (sto (CURRENTTEAM)) + TEAMALLOC + z)[be-private-var℄envp; envV ; sto ` pmem x!ae bwhere (integer; z) = envV (x) andb = sto (antLo (sto (CURRENTTEAM) ; sto (CURRENTANT)) +ANTALLOC + z)Table 3.17: Memory variables for boolean expressions34

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS[de-lit℄envP ; envV ; sto ` dl!de dwhere B[[dl ℄℄ = d [de-parenthesis℄envP ; envV ; sto ` de!de denvP ; envV ; sto ` (de) !de d[de-ruleall℄
PF ; env0V [next 7! new (l)℄�!PF env00VenvP `
PA; env00V [next 7! new (l)℄ ; sto�!PA �env3V ; sto0�envP `
DV ; env3V ; sto0�!DV �env4V ; sto00�envP `
DA; env4V ; sto00�!DA �env5V ; sto3�envP ; env5V [return 7! l℄ `
S; sto3�! sto4envV ; sto ` r(PA) !de dwhere l = envV (next) and d = sto4 �env5V (return)�and if envR (r) = �S ;PF ; env 0V ;DV ;DA; diretion�Table 3.18: Semantis for literals, parenthesis and rule alls[de-getProperty℄envV ; sto ` getProperty(ae) !de dwhere envV ; sto ` ae!ae z1d = sto (z1)Table 3.20: getproperty for diretion expressionthat a diretion expression will give a d given a variable environment envV , a proedure environmentenvp and a store sto.In the rules below we will be giving the semanti rules for diretion expressions !de . Sine all thesemanti rules for this transition system are almost idential to those of the already de�ned systems, theywill stand unommented.[de-var℄envP ; envV ; sto ` x!de d if envV (x) = (diretion; l) and sto l = d[de-array℄envP ; envV ; sto ` x[ae℄!de d where envP ; envV ; sto ` ae!ae z00and if envV (x) = (diretion; l; z0) and d = sto (l + z00)and z00 < z0 and z00 � 0Table 3.19: Semantis for [de-var℄ and [de-array℄3.4.4 Variable DelarationsWe de�ne the transition system for DeVar to the 3-tuple (�DeVar ;!DV ;TDeVar). The on�gu-rations �DeVar are de�ned as (DeVar � EnvV � Store) [EnvV � Store, and the end on�gurationTDeVar = EnvV � Store.The transition relation is on the following formenvP ` hDV ; envV ; stoi !DV �env0V ; sto0�35

3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[de-ommon-var℄envP ; envV ; sto ` mem x!de dwhere envV (x) = (integer; z) and d = sto (COMMONBASE + z)[de-team-var℄envP ; envV ; sto ` tmem x!de dwhere envV (x) = (integer; ; z) andd = sto (teamLo (sto (CURRENTTEAM)) + TEAMALLOC + z)[de-private-var℄envP ; envV ; sto ` pmem x!de dwhere envV (x) = (integer; z) andd = sto (antLo (sto (CURRENTTEAM) ; sto (CURRENTANT)) +ANTALLOC + z)Table 3.21: memory variables for diretionand is de�ned by the semanti rules below. Note that normal variables in AWL must by delared with avalue. This is the reason that the transitions alter both the variable environment and the store.[Dv-variable delaration℄envP ` hDV ; envV [x 7! (type; l)℄ [next 7! new (l)℄ ; sto [l 7! v℄i !DV �env0V ; sto0�envP ` hvar x : type = exp;DV ; envV ; stoi !DV �env0V ; sto0�where envP ; envV ; sto ` exp!exp v and l = envV (next)[Dv-variable-delaration-empty℄envP ` h"; envV ; stoi !DV (envV ; sto)Table 3.22: Variable delarationTable 3.22 shows that the delaration of a variable results in� the variable name is bound to the next free storage loation, and� that storage loation is bound to the value of the variable.The pointer to the next free loation next is updated to point on the next free address. We use the funtionnew to aomplish this. We de�ne the empty delaration rule to end a list of variable delarations.3.4.5 Array DelarationsFor the transition system (�DeArray ;!DA ;TDeArray) we have the following on�gurations�DeArray = (DeArray � EnvV � Store) [EnvV � Storeand the following end on�gurations TDeVar = EnvV � StoreThis is similar to that of variable delarations. The transition relation for this ategory is on the form36

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMSenvP ` hDA; envV ; stoi !DA �env 0V ; sto0�The transition results in a hanged variable environment env0V and a hanged store sto0, sine arraysmust be delared with a value The transition relation is de�ned by the semanti rules below.[Da-array-delaration℄envP ` hDA; envV [x 7! (type; l; z)℄[next 7! new (l; z))℄; sto[li 7! v℄i !DA �env0V ; sto0�envP ` harray x[n℄ :type=exp;DA; envV ; stoi !DA �env0V ; sto0�whereenvP ; envV ; sto ` exp!exp v and envP ; envV ; sto ` n!ae z andi 2 [0::z � 1℄ and l = envV (next) and z > 0[Da-array-delaration-empty℄envP ` h"; envV ; stoi !DA (envV ; sto)Table 3.23: Array delarationIn table 3.23 we show how an array delaration is applied in our semantis. The delaration of an arrayresults in� the array name x is bound the the �rst storage loation of the array, and� eah storage loation li in the array are bound to the applied value v.We have the empty rule to end a list of array delarations.3.4.6 Rule DelarationsThe transition system for rule delarations is de�ne as (�DeRule ;!DR ;TDeRule), where �DeRule = (DeRule � EnvP) [EnvPand TDeRule = EnvP .So we have that a on�guration is a proedure environment follow by more delarations, or just a pro-edure environment. The end on�guration is when all rules have been delared, and thus we have onlythe updated proedure environment.The transition relation is on the form envV ` hDR; envP i !DR env 0P , and is de�ned by the semantirules below. [Dr-rule-without-return℄envV ` hDR; envP [r 7! (S;PF ; envV ;DV ; DA)℄i !DR env0PenvV ` hrule r(PF) fDV ;DASgDR; envP i !DR env0P[Dr-rule-with-return℄envV ` hDR; envP [r 7! (S;PF ; envV ;DV ; DA; type)℄i !DR env0PenvV ` hrule r(PF) :type fDV ;DA; SgDR; envP i !DR env0P[Dr-rule-empty℄envV ; sto ` h"; envP i !DR envPTable 3.24: Rule delarations37

3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWLTable 3.24 shows that eah rule delaration will bind the rule name to its formal parameters, its delara-tions and its ommands. For rules with a return type the return type is also stored. Sine we have stativariable bindings, we also store the variable environment as it looks at the time of the rule delaration.The empty rule delaration is de�ned to end a list of rule delarations.When a rule is alled (desribed in the transition system of S), we an feth these stored values, andapply them to the omputation as needed.3.4.7 Turn and Ant Type DelarationsThe transition system for DeTurn ((DeTurn � EnvP) [EnvP ;!DT ;EnvP) and the transition systemfor DeAT (DeAntType � EnvP [EnvP ;!DAT ;EnvP) resembles that of DeRule, and the de�nition oftheir transition relation is very similar.Turn delarations are on the form envV ` hDT ; envP i !DT env 0P and !DT is de�ned in table 3.25. Wesee that the only di�erene from rule delarations is that turns an have no return type.[Dt-turn℄envV ` hDT ; envP [t 7! (S;PF ; envV ; DV ;DA)℄i !DT env0PenvV ` hturn t(PF) fDV DASgDT ; envP i !DT env0P[Dt-turn-empty℄envV ` h"; envP i !DT envPTable 3.25: Turn delarationAnt type delarations are on the similar form envV ` hDTEAM ; envP i !DAT (; env 0P), and!DAT is de�nedin table 3.26. Ant types an not take any parameters or return any value.[Dat-anttype-delaration℄envV ` hDAT ; envP [at 7�! (S; envV ;DVDA)℄i !DAT �env0P �envV ` hanttype atfDVDASgDAT ; envP i !DAT �env0P �Table 3.26: Ant type delaration3.4.8 Common Memory DelarationsThe transition system (�DeMC ;!DMC ;TDeMC) is de�ned by the following on�gurations.�DeMC = (DeMC � EnvV � Store) [(EnvV � Store)So a on�guration in this transition system an either be an updated variable environment and store,where we still have delarations to perform. Or all variables have been delared, and we have the updatedvariable environment and store.We therefore have the end on�gurations de�ned as:TDeMC = EnvV � Store38

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMSThe transition relation for !DMC is on the formenvP ` hDMC ; envV ; stoi !DMC �env 0V ; sto0�and it is de�ned by the semanti rules of table 3.27.[Dm-ommon℄envP ` hDMC ; envV [x 7! (type; z)℄ [next 7! new(l)℄ ; sto[l 7! v ℄[COMMONDECLS 7! z + 1 ℄i!DMC �env 0V ; sto0�envP ` hommon var x : type = exp ;DMC ; envV ; stoi !DMC �; env0V ; sto0�where envP ; envV ; sto ` exp! v and envV (next) = l and z = sto(COMMONDECLS)[Dm-ommon-empty℄envP ` h�; envV ; stoi !DMC (envV ; sto)Table 3.27: Common memoryCommon variables are very di�erent from normal variables, both in the way they are delared and stored,and in the way they are referenes after delaration. As shown in �gure 3.1 we have a storage loationontaining the number of ommon variable delarations made (COMMONDECLS). We inrement thisnumber by one every time a ommon variable is delared. Furthermore we store the value of the number,together with the type of variable, in the variable environment. This enables us to referene ommonvariables by making the alulation sto(COMMONBASE + z), where z is the index of the given variable.We update the storage sto with the value of the variable, and moves the pointer next to the next freeloation.3.4.9 Team Memory DelarationsThe transition system (�DeMT ;!DMC ;TDeMT) is de�ned by the on�gurations.�DeMT = (DeMT � EnvV � Store) [(EnvV � Store)and the end on�gurations TDeMT = EnvV � StoreSo a team memory delaration will result in an updated variable environment and an updated storage.The transition relation for !DMT is on the formenvP ` hDMT ; envV ; stoi !DMT �env 0V ; sto0�and is de�ned by the semanti rules in table 3.28.A team memory variable is delared without assigning a value to the variable. The semanti rule doeshowever update the storage, sine it inrements the number of team variables delared by one (the numberis found in the storage loation TEAMDECLS). As with ommon variables, the variable name is boundthe value of this number, and the variable type in the variable environment.39

3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[Dmt-team℄envP ` hDMT ; envV [x 7! (type; z)℄ ; sto[TEAMDECLS 7! z + 1 ℄i ! �env 0V ; sto0�envP ` hteambrain var x : type ;DMT ; envV ; stoi ! �; env0V ; sto0�where and z = sto(TEAMDECLS)[Dmt-team-empty℄envP ` h�; envV ; stoi !DMC (envV ; sto)Table 3.28: Team memory delaration3.4.10 Private Memory DelarationsThe transition system (�DeMP ;!DMP ;TDeMP) is de�ned by the on�gurations �DeMP = (DeMP � EnvV � Store) [(EnvV � Store)and the end on�gurations TDeMP = EnvV � Store. So we have that a private variable delaration up-dates the variable environment and the storages.The transition relation for !DMP is on the formenvP ` hDMP ; envV ; stoi !DMP �env 0V ; sto0�and is de�ned by the semanti rules in table 3.29. The semanti rules are very similar to those of teamvariable delarations, and will stand unommented.[Dmp-private℄envP ` hDMT ; envV [x 7! (z; type)℄ ; sto[PRIV ATEDECLS 7! z + 1℄i ! �env0V ; sto0�envP ` hprivate var x : type ;DMP ; envV ; stoi ! �; env0V ; sto0�where z = sto(PRIVATEDECLS)[Dmt-private-empty℄envP ` h�; envV ; stoi !DMC (envV ; sto)Table 3.29: Private memory delaration3.4.11 CommandsWhere delarations an alter both the environments and storage of AWL, ommands an only alter thestorage - e.g. assigning a new value to a variable. We therefore de�ne the transition system(Com � Store [Store;!S ;Store)Transitions are on the form envP ; envV ` hS; stoi ! sto0, sine we need to know about the bindings ofproedures and variables to exeute a ommand orretly.The transition rules for !S are de�ned in the semanti rules below.40

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS[S-while-true℄envP ; envV ` hS; stoi !S sto00envP ; envV ` hwhile(be)fSg; sto00i !S sto0envP ; envV ` hwhile(be)fSg; stoi !S sto0where envP ; envV ; sto ` be!be tt[S-while-false℄envP ; envV ` hwhile(be)fSg; stoi !S stowhere envP ; envV ; sto ` be!be ffTable 3.30: While ommandTable 3.30 shows the semantis of a while ommand. If the ondition of the ommand is true, then weexeute the body, and apply the same while ommand on the updated storage. So the while ommand isde�ned reursively. If the ondition is false, then there are no hanges to the storage.[S-if-true℄envP ; envV ` hS1; stoi !S sto0envP ; envV ` hif(be)fS1gelsefS2g; stoi !S sto0where envP ; envV ; sto ` be!be tt[S-if-false℄envP ; envV ` hS2; stoi !S sto0envP ; envV ` hif(be)fS1gelsefS2g; stoi !S sto0where envP ; envV ` be!be ffTable 3.31: If-Else ommand[S-assign℄envP ; envV ` hx = exp; stoi !S sto[l 7! v℄where envP ; envV ; sto ` exp!exp v and envV (x) = l[S-omp℄envP ; envV ` hS1; stoi !S sto00envP ; envV ` hS2; sto00i !S sto0envP ; envV ` hS1 S2; stoi !S sto0Table 3.32: Assign and Comp ommandThe semanti rules for the if-else ommand are de�ned in table 3.31. Again there are the two possibilitiesthat the ondition is either true or false. If the ondition is true then the body of if is exeuted, otherwisethe body of else is exeuted. The semanti rule for an assign ommand shows that to update the valueof a variable we �rst lookup the storage loation, and then bind the new value to this loation. Therule [S-omp℄ shows that to exeute onseutive ommands, we �rst exeute the �rst ommand, and thenexeute the next ommand on the updated storage.41

3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[S-assign-array℄envP ; envV ` hx[ae℄ = exp; stoi !S sto[llo 7! v℄where envP ; envV ; sto ` ae!ae z1 and envV (x) = (type; l; z2) andllo = l + z1 and envP ; envV ; sto ` exp!exp v andz1 � 0 and z < z2Table 3.33: Array assign ommandTable 3.33 shows how to assign a new value to an element in an array. We �rst evaluate the arithmetiexpression to the index of the desired element, and lookup the base address of the array. We then addthese two values together and lookup the loation in the storage. To make sure that we do not aessstorage outside the array alloations, we hek that the given index i between zero and the length of thearray (minus one).[S-ommon memory assign℄envP ; envV ` hmem x = exp; stoi !S sto[l 7! v℄where (type; z) = envV (x) and l = COMMONBASE + z[S-team memory assign℄envP ; envV ` htmem x = exp; stoi !S sto[l 7! v℄where (z; type) = envV (x) andl = teamLo (sto (CURRENTTEAM)) + TEAMALLOC + z[S-private memory assign℄envP ; envV ` hp x = exp; stoi !S sto[l 7! v℄where (z1; type) = envV (x) andl = antLo (sto (CURRENTTEAM) ; sto (CURRENTANT)) + ANTALLOC + zTable 3.34: Memory assign ommands[S-rule-all℄
PF ; env0V [next 7! new (l)℄�! env00VenvP `
PA; env00V [next 7! new (l)℄ ; sto�! �env3V ; sto0�envP `
DV ; env3V ; sto0�!DV �env4V ; sto00�envP `
DA; env4V ; sto00�!DA �env5V ; sto3�envP ; env5V `
S; sto3�!S sto4envP ; envV ` hr(PA);; stoi !S sto4where l = envV (next) and envP (r) = �S ;PF ; env 0V ;DV ;DA�[S-turn-all℄
PF ; env0V [next 7! new (l)℄�! env00VenvP `
PA; env00V [next 7! new (l)℄ ; sto�! �env3V ; sto0�envP `
DV ; env3V ; sto0�!DV �env4V ; sto00�envP `
DA; env4V ; sto00�!DA �env5V ; sto3�envP ; env5V `
S; sto3�!S sto4envP ; envV ` hendturn t(PA);; stoi !S sto4where l = envV (next) and envP (t) = �S ;PF ; env 0V ;DV ;DA�Table 3.35: Rule and turn all ommands42

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS[S-setProperty℄envP ; envV ` hsetProperty(ae; exp);; stoi !S sto [l 7! v℄where envP ; envV ; sto ` ae!ae z and envP ; envV ; sto ` exp!exp v andl = z Table 3.37: Set property ommand[S-proess℄envP ; envV ` hDV ; env0V [next 7! new (l)℄ ; stoi !DV (env00V ; sto0)envP ; envV ` hDA; env00V ; sto0i !DV (env000V ; sto00)envP ; envV ` hS; sto00 [l1 7! z1℄ [l2 7! z2℄i !S sto000envP ; envV ` hproess(ae1; ae2; at);; stoi !S sto000where �env 0V ;DV ;DAS� = envP (at), andenvP ; envV ; sto ` ae1 !ae z1 and envP ; envV ; sto ` ae2 !ae z2l1 = sto (CURRENTTEAM) and l2 = sto (CURRENTANT)Table 3.38: Proess ommandWhen assigning a value to a ant memory variable as done in table 3.34, we �rst lookup the variable'srelative address. We then lookup the base address of the memory type (e.g. for ommon variables wehave COMMONBASE). We an now update the storage at the base address added to the relativeaddress with the new value. Calling a rule as a ommand is similar to alling a rule as an expression -exept that there is no storage alloated for a return value.[S-return℄envP ; envV ` hreturn exp;; stoi !S sto [l 7! v℄where l = envV (return) and envP ; envV ; sto ` exp! v[S-skip℄envP ; envV ` hskip;; stoi !S stoTable 3.36: Return and skip ommandIn table 3.36 we show the semanti rules for the return and the skip ommand. The skip ommand(obviously) does absolutely nothing. The return ommand evaluates its expression parameters, andstores the value in the loation denoted by envV (return), whih have been updated by the rule all thatultimately lead to this ommand. The setProperty ommand updates a given loation diretly in thestorage. This is of ourse a powerful ommand, but also dangerous, sine it makes it very easy for theprogrammer to make fatal mistakes.The proess ommand takes a team number, a ant number and an ant-type name. Basially this is just aproedure all to the given ant type, exept that we update the storage loations CURRENTTEAM andCURRENTANT we the applied values. This ahieves that the ant programmer do not need to worryabout his team number, or whih ant he is urrently proessing. The ant type an then be programmedas if there were just one ant. 43

3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL3.4.12 Formal and Atual ParametersThe formal parameters of a proedure is basially variable delarations. We therefore de�ne the transitionsystem �FParm � EnvV [EnvV ;!PF ;EnvV �for formal parameter delarations, whih shows that formal parameters only hange the variable environ-ment, sine they do not assign a value to the parameter.We also de�ne the transition system�AParm � EnvV � Store [EnvV � Store;!PA ;EnvV � Store�for atual parameter assignments. Atual parameters primarily hange the storage applying values toalready delared formal parameters. We do however move the pointer next in the variable environment.The transition relation for formal parameters!PF is on the form hPF ; envV i !PF env0V and are de�nedby table 3.39. The semanti rules shows that eah parameter will get its name bound to a storage loationin the variable environment. [Pf-formal parameters℄hPF ; envV [x 7! l℄ [next 7! new (l)℄i ! env0Vhvar x : type;PF ; envV i !S env0Vwhere l = envV (next)[Pf-formal parameters-empty℄h�; envV i !S envVTable 3.39: Formal parametersThe semanti rules de�ning the !PA are on the form envP ` hPA; envV ; stoi ! (env0V ; sto0) and de�nedin table 3.40. [Pa-atual parameters℄envP ` hPA; envV [next 7! new (l)℄ ; sto [l 7! v℄i ! �env0V ; sto0�envP ` hexp;PA; envV ; stoi !PA �env0V ; sto0�where l = envV (next) and envP ; envV ; sto ` exp!exp v[Pa-atual parameters-empty℄envP ` h�; envV ; stoi !PA (envV ; sto)Table 3.40: Atual parameters3.4.13 Team DelarationWhen a team is delared in AWL, we alloate spae for the following data:44

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS� The primary team attributes - team number, next ant (urrently ative ant ount) and the x , yoordinates of the team base.� A opy of the delared teambrain memory variables.� The number of ants (found in the loation MAXANTS) and for eah ant a opy of the delaredprivate memory variables.The primary attributes of a team an be assigned values at team delaration. The team number is just ainrementing number (stored at TEAMCOUNT), and the x , y oordinates are hosen randomly. Sinethere are no ative ants on a newly delared team, the value of the next ant storage loation should bezero.So a team delaration will alter the variable environment and the storage. We de�ne the transition system��DeTeam ;!DTEAM ;TDeTeam�with the on�gurations �DeTeam = DeTeam � EnvV � Store [EnvV � Storeand the end on�gurations TDeTeam = EnvV � StoreTransitions will be on the form envP ` hDTEAM ; envV ; stoi !DTEAM (env 0V ; sto0) and the transition re-lation is de�ned in table 3.41. When a team is delared we lookup how many teams that have alreadybeen delared. We store this number as the team number at loation l. The storage loation denotedby lnt is the next free storage loation (where the next team an be stored). The alulation of lnt takesthe base of the team being delared, and adds the total amount of loations alloated to eah team. lnais the storage loation storing the urrently ative ant ount, whih we set to zero. Finally we store therandom onstruted oordinates, and inrement the number of delared teams by 1.[Dteam-reateTeam℄envP `< DTEAM ;envV [x 7! (integer; l)℄ [next 7! lnt℄ ;sto [l 7! teamno℄ [lna 7! 0℄ [lx 7! x℄ [ly 7! y℄ [TEAMCOUNT 7! (z + 1)℄!DTEAM �env0V ; sto0�envP ` hreateTeam(x);DTEAM ; envV ; stoi !DTEAM �env0V ; sto0�wherel = envV (next) ,lna = new(l) , lx = new(l; 2), ly = new(l; 3),teamno = sto (TEAMCOUNT) ,lnt = new(l ;TEAMSIZE),x = ran (sto (WORLDSIZE)) and y = ran (sto (WORLDSIZE))[Dteam-reateTeam-empty℄envP ` h"; envV ; stoi ! (envV ; sto)Table 3.41: team delaration45

3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL3.4.14 WorldThe de�nition of a world is a omplete AWL program. All other syntatial onstruts are derivated fromthe world onstrut, and thus it is what ties an AWL program together. The result of a world onstrutis that storage has hanged, sine all delarations are out of sope, when we step out of the de�ned world.The transition system de�ningWorld is (World � Store;!w ;Store). Transitions are on the form hw; stoi !w(sto0) , whih illustrates the point that only storage hanges. The transition relation !w is de�ned intable 3.42.[w-world℄envP ` hDCM ; envV [next 7! l℄ ; sto [WORLDSIZE 7! z1 ℄ [MAXANTS 7! z2 ℄ [MAXFOOD 7! z3 ℄i !DCM �env; sto1�envP `
DTMenv; sto1�!DTM �env; sto2� envP `
DPMenv; sto2�!DPM �env; sto3�envP `
DTEAM ; env3V ; sto3�!DTEAM �env4V ; sto4�env4V ` hDR; envP i !DR env1P env4V `
DT ; env1P �!DT env2Penv4V `
DAT ; env2P �!DAT �env3P �env3P `
DV ; env4V ; sto4�!DV �env5V ; sto5� env3P `
DA; env5V ; sto5�!DA �env6V ; sto6�env3P ; env6V `
S; sto7�!S sto8hworld(n1n2n3)fDCMDTMDPMDR; DTDATmainfDTEAMDVDASgg; stoi !w sto8whereenvp; envV ; sto ` n1 !ae z1, envp; envV ; sto ` n2 !ae z2 , envp; envV ; sto ` n3 !ae z3 andl = FOODBASE + sto(MAXFOOD) � 2Table 3.42: The world delarationThe semanti rule [w-world℄ is large, but very straight-forward. A world de�nition is made up by thefollowing elements� The world parameters (size, ants and food)� Common, teambrain and private ant memory delarations� Rule delarations� Ant type delarations� Team delarations� Main setionSo to ompute a world, we �rst store the world parameters in the prede�ned storage loationsWORLDSIZE,MAXANTS andMAXFOOD. Doing this we also move next to point at the next free loation after thestorage alloated to food. We then run through all delarations, and �nally we exeute the ommands inthe main setion of the program. 46

CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.5. STANDARD ENVIRONMENT3.5 Standard EnvironmentIn our language we provide methods for getting a value diretly from memory, and a method for settinga value diretly to memory. getProperty(ae) setProperty(ae; v)Using these methods requires the programmer to have a knowledge of how the data is stored, and thatis of ourse a problem. However, it is also to great a task to de�ne syntatial onstruts and semantialrules for every desirable operation in AWL. This would simply result in a very large grammar, and somevery ompliated semanti rules. The solution to this is to introdue a standard environment, where highlevel funtions ould be implemented using the basi operations of AWL. An example of a funtion, thatould very well be in a standard environment for AWL ould be getWorldSize(), whih would return thesize of the world. [getWorldSize℄proedure getWorldSize()freturn getproperty(0); gAnother proedure that might be helpful when reating a ant world ould be walk(var d : diretion),whih would move an ant in a given diretion, and perhaps also hek to see if the moving ant ouldapture a base or kill an enemy ant.It is lear that the usability of AWL would be greatly inreased with a standard environment, howeverat its urrent state, there is no standard environment in AWL. To introdue one we should expand theproedure environment to ontain normal proedure and funtions, whih should only be aessible fromthe main setion and rules (ants should not have aess).An example of a another standard environment is the Java.lang pakage in JAVA, whih implementsmany useful methods using the basi operations of JAVA.3.6 Derivation TreeIn this setion we will show how we an use the semantis desribed in the previous setions to desribean exeution of a given program. We will give examples of how a derivation tree for a while ommandlooks like, and one for an equals expression. The derivation trees shows the di�erent stages a statementgoes through before ending up in the end state.While derivation tree.(2)envP ; envV ` hy = y � 1; ; stoi !S sto [l 7! (z1)℄ (3)vP ; envV ` hwhile(v > 0)fy = y � 1; g; sto0i !S sto0(1)envP ; envV ` hwhile(v > 0)fy = y � 1; g; stoi !S sto0(1)=Where envP ; envV ; sto ` (y > 0) ! tt; l = envV (y), andenvP ; envV ; sto ` y ! 1(2)=Where envP ; envV ; sto ` (y � 1) ! z1(3)=Where envP ; envV ; sto ` (y > 0) ! ff , and whereenvP ; envV ; sto ` y ! 0Here is a derivation tree for while. We see that in the �rst loop that y > 0 evaluates to true, and thereforewe need to exeute the ommands found within the while body. The ommand to be exeuted is an assignommand that subtrats 1 from the variable y. This results in y being equal to 0. with the updatedstorage we all while again. This time y > 0 will evaluate to false, and the while loop will terminate. Ify had been equals e.g. 10, the tree would have been muh more omprehensive and we would have hadto loop through the while statement a lot more times.Equals arithmeti expression derivation tree.47

3.7. SUMMARY CHAPTER 3. OPERATIONAL SEMANTICS FOR AWLenvP ; envV ; sto ` 9 !ae z1 envP ; envV ; sto ` 8 ! z3 envP ; envV ; sto ` 5 ! z4envP ; envV ; sto ` 8 � 5 ! (z3 � z4)envP ; envV ; sto ` 9 == 8 � 5 !be ffWhere z1 6= (z3 � z4)We here show the derivation tree for an equals expression. We �rst evaluate the leftmost argumentto z1, we then proeed to evaluate the rightmost argument. This argument is a omposite arithmetiexpression. Beause of this we evaluate this �rst and get (z3 � z4). we now ompare these and get ffbeause z1 6= (z3 � z4). Logially the more omplex the expression is the higher the derivation tree willspan. In this example we have a numeral and a multipliation expression as the logial parts of theboolean expression. The reason that these are the logial expressions is that this is so desribed in ourgrammar33.7 SummaryIn this hapter we have de�ned the operational semantis of AWL. To do so, we have de�ned syntatialategories and spei�ed an abstrat grammar, on whih we have based our transition systems. We havede�ned the environments and storage that AWL uses, and spei�ed funtions to aid us in desribing thesemantis. The semantis of all syntatial onstruts have been de�ned in the transition relation of thetransition systems.Looking bak at this hapter, a reasonable question would be if it wouldn't be a lot easier just to desribethe semantis with words. Clearly it would make the semantis easier to understand when �rst readingthem. However the semantis are onstruted for implementation of the programming language, and itis very likely that semantis spei�ed only with words would ause onfusion and misunderstandings. Byusing a known notation and de�ning exatly how eah syntatial onstrut hanges the environment, weavoid onfusion.In the next hapter we will de�ne another operational semantis for the abstrat mahine AWLAM.

3The BNF desribed in hapter 2 48

Chapter 4AWLAMIn this hapter we will de�ne the abstrat mahine AWLAM, whih is shorthand notation for �Ant WarLanguage Abstrat Mahine�. We will de�ne how the abstrat mahine is designed and works, and alsowhih instrutions it provides. The instrutions will be desribed by an abstrat syntax, and furthermorewe will give an operational semantis for it. We will use the abbreviation AM and the omposite word�abstrat mahine� interhangeably. When we refer to AM it will be the AWLAM unless we have spei�edotherwise. Also we will use the normal terms assoiated with stak operations, i.e. push and pop, whena value is added to the top of a stak, or when a value is removed from the top of a stak.As suh the abstrat mahine should be seen as an �abstrat AM�. It means that the AM de�ned inthis hapter does not neessarily resemble how it atually will be implemented, but may be seen as anintermediate result. The reason for this is that we wish to bridge the semanti gap in a more gentlemanner, and it makes the proess of proving our result a lot nier. The atual di�erene is not very big,and will be explained in the next setion.4.1 De�nition of AWLAMWe will now give a de�nition of the AM. The AM is made up from a set of registers, a ode store, adata store, a ode stak, and an evaluation stak. The registers point to various areas of the ode anddata store during the exeution of an AM program. The evaluation stak is used for diretion, booleanand arithmeti alulations, the ode stak for keeping trak of whih instrutions have to be exeutedand the two stores will, as their names imply, be used for storage of program data and the program odeitself. Figure 4.1 on page 51 shows how the memory and the registers are laid out.There are nine registers whih are: �Current team� (CT), �Current team memory� (CTM), �Current ant�(CA), �Current ant memory� (CAM), �Start team� (ST), �Start data� (SD), �Next� (NEXT), �Loalsope� (LS), �Common memory� (CM) and �Program ounter� (PC). The CT register refers to thestart address of the urrent team, whih means the team that is in sope at the moment, and the CAregister refers to the start address of the urrent ant, on the urrent team. The CTM and CAM areused for referring to the ant-memory loations of the urrent team and the urrent ant. The e�et is thatyou always know whih ant is urrently being exeuted, and whih team it belongs to, and therefore youknow what part of the memory should be in sope. The LS register refers to the value of loal sope,and keeps trak of what sope we are urrently in, and the CM is used to keep trak of the ommonmemory. The PC register is used to refer to the urrent instrution on the ode store. It is though, notused as one might expet. As suh the atual exeution of ode is ontrolled with the ode stak, andthe program ounter is used to keep trak of what is urrently on the ode stak. The loation of theseregisters at the start of the program is illustrated in �gure 4.1The ode store will ontain the program, whih is going to be exeuted, expressed in abstrat mahineode. The data store ontains all the data whih is stored during the program's life yle. When we refer49

4.1. DEFINITION OF AWLAM CHAPTER 4. AWLAMto loations in the stores, we will do so relatively from the start of the store. It means that the �rst lineof a store will be addressed �0�, and the line after �1�. The same thing holds for the registers.The evaluation stak is used for alulations during the exeution of a program, and an ontain integers,booleans and diretions. The ode stak will ontain the ode whih is going to be exeuted next. Atthe start of a program it will be a opy of the ode store, but as the program exeutes, instrutions willbe popped from the stak. If at some point in the ode a jump is made to another part of the ode, theontent of the stak will be popped. The ode at the plae to where we jumped, and through to the endof the program, will be pushed onto the stak. Again instrutions will be popped from the stak as theyare exeuted. This will ontinue until the program terminates or another jump is reahed.As suh, the ode stak might not be the best solution to ontrol exeution of ode, and may be seen asan abstration. It would be more reasonable to implement a �program ounter� register, and use it topoint at the next instrution to be exeuted from the ode store. The pros and ons for using a programounter is that it boosts exeution speed and e�ieny, but adds to the omplexity of the mahine. Thereis only a minor di�erene in the behavior between using a register solution and using the stak solution.As implied earlier we will use the register solution.For the sake of simpliity we will assume that all variables and instrutions use one memory loation eahin the memory of the AM. The theory and notation in this hapter is based on the book 1.Figure 4.1 shows how the memory is organized, and where the registers are pointing at the start of aprogram. The layout is the same as that of AWL, the only di�erene being that in AWLAM we haveregisters.4.1.1 Notation and De�nitionsBefore we go on, it might be a good idea to introdue some de�nitions, and to say a little about thenotation used in the next setion. Con�gurations of the AM are on the form:hr ; ; e; mi 2 Reg�Code� Stak �Memoryr is the funtion mapping registers to numbers de�ned by:r 2 Reg = Register ,! Zand the set of registers is:g 2 Register = fPC ; CT ; CTM ; CA; CAM ; ST ; SD ; NEXT ; LSgode is the sequene of ode to be exeuted and onsists ofode 2 Codea set of AM instrutions, whih is de�ned by the abstrat syntax in table 4.1. k is the number of totalinstrutions in the ode. The ode stak is de�ned by: 2 Stak = (ode)and e is the evaluation stak de�ned by:1[2, hapter 3℄ 50

CHAPTER 4. AWLAM 4.1. DEFINITION OF AWLAM
ST, CTè 18 Team - 0 - no

19 Team - 0 -nextant

20 Team - 0 - Base X

21 Team -0 - Base Y

CTMè 22 Team -0-teamvar-0

23 Team -0-teamvar-1

24 Team -0-teamvar-j

CAè 25 Ant - 0 - X Coord

26 Ant - 0 - Y Coord

CAMè 27 Ant - 0 - private value - 0

28 Ant - 0 - private value -1

29 Ant - 0 - private value - k

30 Ant - 1 - X Coord

31 Ant - 1- Y Coord

32 Ant - 1 - private value - 0

33 Ant - 1 - private value -1

34 Ant - 1 - private value - k

35 Ant - i - X Coord

36 Ant - i - Y Coord

37 Ant - i - private value - 0

38 Ant - i - private value -1

39 Ant - i - private value - k

40 Team - 1 - no

41 Team - 1 -nextant

42 Team - 1 - Base X

43 Team -1 - Base Y

44 Team -1-teamvar-0

45 Team -1-teamvar-1

46 Team -1-teamvar-j

SDè 0 world size

1 max ant number

2 number of foods

3 number of declared teams

4 current team

5 current ant

6 number of common decl.

7 number of team decl.

8 number of private decl.

9 food - 0 -X

10 food - 0 -Y

11 food - 1 -X

12 food - 1 -Y

13 food - l -X

14 food - l -Y

CMè 15 common value - 0

16 common value -1

17 common value -i

Register Name

SD = Start data

CM = Common memory

SD = Start data

ST = Start team

CTM = Current team memory

CA = Current ant

CAM = Current ant memory

Figure 4.1: Memory of awlam.
51

4.1. DEFINITION OF AWLAM CHAPTER 4. AWLAMe 2 eStak = (Z[Bool [Dir)�where b 2 Bool = ftt ; ff g and d 2 Dir = fll ; rr ; uu; dd ; g.m is the memory formally de�ned by:m 2Memory = (Z[Bool [Dir)�.The transition relation for AWLAM is on the form:hr ; ; e; mi . hr 0; 0; e 0; m 0iwhere the triangle spei�es the transition itself, and means that it is done in one step. Finally z 2 Z.When we write hr ;ADD : TRUE : ; z1 : z2 : e;mi, it means that the instrutions on the ode stak isthe ADD ommand, and that the one oming right after is the TRUE ommand, i.e. when the ADDommand has been exeuted, the next instrution on the stak will be TRUE. The means that theremight be more ode on stak, but we will only speify the ode that we need at this ertain time.When there is a olon between two elements it serves as a separator. In the example mentioned beforetwo elements are on the stak, namely z1 and z2 whih are used as operands for the ADD ommand.Furthermore, we shall use the notation r(g) to denote the value of register g. When we refer to it inonnetion with the evaluation stak, we will use the register name to mean the atual value of theregister. E.g. when we write next : e we atually mean r(next) : e.With these de�nitions, we are ready to take a look at the operational semantis.4.1.2 Instrution Set of AWLAMThe instrution set of AWLAM is seen in table 4.1. It is expressed in BNF and tells us that ode an beeither a single instrution, a sequene of instrutions, or no instrution at all.ode ::= � j inst : odeinst ::= ADD j SUB jMULT jDIV jPUSH n jPOP jTRUE jFALSEj LEFT jRIGHT jUP jDOWN jCENTER j EQ j LE jNEGj AND jOR j JUMP n j JUMPF n j LOADS [g ℄ j LOAD n [g ℄j SAVES [g ℄ j SAVE n [g ℄ j LABEL n jNEXTj CALL n1 ;n2 jCALLAT n jRETURN j SAVEREG gj NOOP j SWAP jRAN jDUPTable 4.1: Abstrat syntax for AWLAMThe instrutions themselves will be explained in the next setion, where we also explain the operationalsemantis for AWLAM. 52

CHAPTER 4. AWLAM 4.2. OPERATIONAL SEMANTICS OF AWLAM4.2 Operational Semantis of AWLAMIn table 4.2 through 4.8 we show the operational semantis for AWLAM. We will start out by explainingthe arithmeti rules in table 4.2.[ADD-AM℄hr ;ADD : ; z1 : z2 : e; stoi . hr ; ; (z1 + z2) : e; stoi[SUB-AM℄hr ;SUB : ; z1 : z2 : e; stoi . hr ; ; (z � z2) : e; stoi[MULT-AM℄hr ;MULT : ; z1 : z2 : e; stoi . hr ; ; (z1 � z2) : e; stoi[DIV-AM℄hr ;DIV : ; z1 : z2 : e; stoi . Dr ; ; (Z1Z2) : e; stoETable 4.2: Transition rules for arithmeti instrutions.The top of the ode stak ontains the ADD ommand, and two values z1 and z2 are found on the topof the evaluation stak. After the instrution has been exeuted the sum of z1 and z2will lie on top ofthe stak. The notation says that (z1 + z2) is on the evaluation stak whih should be read as the atualresult of this operation. The rest of the arithmeti operations work in a similar way. In the table 4.3 wesee the instrutions for pushing and popping a value to the evaluation stak.[PUSH n-AM℄hr ;PUSH n : ; e; stoi . hr ; ;N [[n℄℄ : e; stoi[POP-AM℄hr ;POP : ; v : e; stoi . hr ; ; e; stoi[TRUE-AM℄hr ;TRUE : ; e; stoi . hr ; ; tt : e; stoi[FALSE-AM℄hr;FALSE : ; e; stoi . hr; ; ff : e; stoi[LEFT-AM℄hr ;LEFT : ; e; stoi . hr ; ; ll : e; stoi[RIGHT-AM℄hr ;RIGHT : ; e; stoi . hr ; ; rr : e; stoi[UP-AM℄hr ;UP : ; e; stoi . hr ; ; uu : e; stoi[DOWN-AM℄hr ;DOWN : ; e; stoi . hr ; ; dd : e; stoi[CENTER-AM℄hr ;CENTER : ; e; stoi . hr ; ; : e; stoiTable 4.3: Instrutions for pushing values onto the stak.53

4.2. OPERATIONAL SEMANTICS OF AWLAM CHAPTER 4. AWLAMThe �rst instrution PUSHn pushes a numeral n onto the stak, or atually it is the value of the numeraln denoted by N [[n℄℄ that is pushed. POP works in the opposite way, whih means that it removes a valuefrom the evaluation stak. The rest works in a way similar to PUSH n, exept that they push the valueof the instrution name, whih means a tt for TRUE, ff for FALSE, ll for LEFT, et. The table 4.4shows instrutions for boolean alulations.
[EQ1-AM℄hr ;EQ : ; z1 : z2 : e; stoi . hr ; ; (z1 = z2) : e; stoi[EQ2-AM℄hr ;EQ : ; b1 : b2 : e; stoi . hr ; ; (b1 = b2) : e; stoi[EQ3-AM℄hr ;EQ : ; d1 : d2 : e; stoi . hr ; ; (d1 = d2) : e; stoi[LE-AM℄hr ;LE : ; z1 : z2 : e; stoi . hr ; ; (z1 � z2) : e; stoi[NEG-AM℄hr ;NEG : ; b : e; stoi . hr ; ;:b : e; stoi[AND-AM℄hr ;AND : ; b1 : b2 : e; stoi . hr ; ; (b1 ^ b2) : e; stoi[OR-AM℄hr ;OR : ; b1 : b2 : e; stoi . hr ; ; (b1 _ b2) : e; stoiTable 4.4: Instrutions for boolean operations.

The EQ instrutions will pop two operands from the stak, and evaluate whether they are equal or not,and then push the boolean result onto the stak. The reason that there are three di�erent rules is thatwe have three simple types, namely arithmeti, boolean and diretion. The three are, exept for theirtype, the alike. The LE instrution works in the same way as EQ, with the only di�erene that it is the�less than or equal� operation. The NEG (boolean not) gives the opposite value of a boolean value onthe evaluation stak, pops the original value and pushes the new value.AND and OR both works the same way. With two boolean values plaed on the stak, they pop thetwo values, and use the boolean operator on them. They then push the result bak onto the evaluationstak. The result depends on the values on the evaluation stak, and is alulated using normal booleanalgebra rules. The part in table 4.5 is the instrutions used for jumping to some spei� part of the ode.In the table k is the length of det total ode. 54

CHAPTER 4. AWLAM 4.2. OPERATIONAL SEMANTICS OF AWLAM[JUMP n-AM℄< r ;JUMP n : ; e; sto > . where z = label (N [[n℄℄)< r [PC 7! z ℄; ode[z ℄ : ode[z + 1 ℄; :::; ode[k ℄; e; sto >[JUMPF1-AM℄< r ;JUMPF n : ; b : e; sto > . if b = ff and< r [PC 7! z ℄; ode[z ℄ : ode[z + 1 ℄; :::; ode[k ℄; e; sto > where z = label (N [[n℄℄)[JUMPF2-AM℄< r ;JUMPF n : ; b : e; sto > . < r ; ; e; sto > if b = tt[LABEL-AM℄< r ;LABEL n : ; e; sto > . < r ; ; e; sto >Table 4.5: Instrutions for jumping in the ode.JUMPn is used to jump to a spei� label in the ode. What happens when a jump is made, is that allode on the ode stak will be popped, and the ode from the plae to where we jumped, through to theend of the program, will be pushed onto the stak. JUMPF n does the same thing, exept that it popsa boolean value from the stak �rst and evaluates it. If it evaluates to false, the same thing will happenas for the JUMPn, and if it evaluates to true the instrution just after the JUMPFn will be exeuted.The LABEL instrution is just to speify a label in the ode, and if one is enountered, the instrutionafter the label will be exeuted next. The instrutions in table 4.6 are used for aessing the registers.[LOADS [g℄-AM℄hr ;LOADS [g ℄ : ; z1 : e; stoi . hr ; ; z2 : e; stoi where z2 = m[r(g) + z1℄[SAVES [g℄-AM℄hr ;SAVES [g ℄ : ; z : v : e; stoi . hr ; ; e; sto [z 7! v ℄i where z = m[r(g) + z℄[LOAD n [g℄-AM℄hr ;LOAD n [g ℄ : ; e; stoi . hr ; ; v : e; stoi where v = m[r (g) +N [[n℄℄℄[SAVE n [g℄-AM℄hr ;SAVE n [g ℄ : ; v : e; stoi . hr ; ; e; sto [z 7! v ℄i where z = r (g) +N [[n℄℄[SAVEREG [g℄-AM℄hr ;SAVEREG [g ℄ : ; z : e; stoi . hr [g 7! z ℄ ; ; e; stoi[NEXT-AM℄hr ;NEXT : ; e; stoi . hr [NEXT 7! NEXT + 1 ℄; ; e; stoiTable 4.6: Instrutions for loading and saving values to registers.LOADS [g℄ is used for loading a value from a memory loation. The memory loation is popped fromthe evaluation stak, and afterwards the retrieved value is pushed onto the evaluation stak. SAVES [g℄is used for saving the seond value lying on the evaluation stak to the memory loation lying on top ofthe stak. LOAD n [g℄ is used for loading a memory loation n whih is relative to a register address gand then pushing it on top of the evaluation stak. So if n = 3, then it is the 3rd memory loation afterregister g's memory loation. SAVE n [g℄ works in a similar way, only di�erene is that it pops a value55

4.2. OPERATIONAL SEMANTICS OF AWLAM CHAPTER 4. AWLAMfrom the stak and saves it to a memory loation n relative to the register g. The NEXT instrution isused for inreasing the memory loation, to whih the register NEXT points, by one. SAVEREG [g℄has the register g point at the loation value that is on top of the stak[CALL-AM℄hr ;CALL n1 ;n2 : ; v1 ; : : : ; vn2 : e; stoi .hr [LS 7! NEXT + 1 ℄;JUMP n1 : ; v1 ; : : : ; vn2 : PC + 1 : NEXT : LS : e; stoiwhere n = label (N [[n1℄℄)[CALLAT-AM℄hr ;CALLAT n : ; e; stoi .hr [LS 7! NEXT ℄[CT 7! z3 ℄[CTM 7! z4 ℄[CA 7! z5 ℄[CAM 7! z6 ℄;JUMP n : ;PC + 1 : NEXT : LS : e; stoiwherez1 = sto (4) (urrent team) , z2 = sto (5) (urrent ant)z3 = ST + z1 � (4 + sto(7) + (2 + sto(8)) � sto(1)) (base address of urrent team)z4 = z3 + 4 (base address of urrent team memory)z5 = z4 + sto(7) + (2 + sto(8)) � z2 (base address of urrent ant)z6 = z5 + 2 (base address of urrent ant private memory)[RETURN-AM℄hr ;RETURN : ; z1 : z2 : z3 : e; stoi .hr [PC 7! z1 ℄[NEXT 7! z2 ℄[LS 7! z3 ℄; ode[z1 ℄ : ode[z1 + 1 ℄; :::; ode[k ℄; e; stoiTable 4.7: Instrutions alling ode, and returning values.CALL n1; n2 is used for alling a spei� label in the ode. It takes two parameters, n1 and n2. The�rst parameter is the label that you want to jump to, and the seond one is the number of argumentsyou have on the stak. The reason you speify this in the all, is that it allows you to know the exatnumber of parameters on the stak. It works as follows: You have n2, (whih is v1to vn) arguments onthe stak, and then use the CALL n1; n2 instrution. The result of this is that the LS register is set topoint at the next free memory loation, the PC register is set to point to PC + 1 and a JUMP n1 isplaed on the ode stak. The PC register, the old values of register LS, and register NEXT are pushedonto the evaluation stak so that after the subroutine all has �nished, it is possible to return to the statethat existed before we entered the subroutine all. The PC register is saved so we know what is the nextinstrution after we return from the subroutine. The LS register is saved so we will know what sope wewere in before, and the NEXT register is saved so we will know what was the next free memory loationbefore the all. This has the e�et that we atually will overwrite all loal sope data from the subroutineafter it has �nished, whih makes perfetly sense, sine we do not want to save it. The return addressis saved so we know whih instrution is the next to be exeuted right after the subroutine returns, i.ewhat ode to put on the ode stak. One thing to notie is that the stak has been rearranged so thatthe arguments for the subroutine is now on top of the stak.The CALLAT n instrution is a bit more ompliated sine it updates a lot more registers. It takes oneparameter, whih is the number of the anttype that should be alled. It uses two values from storage,the urrent team number and the urrent ant number, whih are used for updating registers. It updatesNEXT , CT , CTM , CA and the CAM register, so that the right ant will be edited inside the ant type.56

CHAPTER 4. AWLAM 4.3. PROGRAM EXAMPLEIt pushes the same values on both the evaluation stak and the ode stak as the CALLn1; n2instrution,so that it will know where to return to.RETURN goes bak to the state before a all was made. Is has the value of the return address (PC)together with the original NEXT and LS registers on the evaluation stak, (z1;z2and z3). After thereturn the NEXT and LS registers will point at the values at whih they did before. If there is anyreturn value (v) it will be plaed in the loation 0 relative to register LS. Also the ode stak will bepopped for all ode, and the ode from the return address (PC), lying on the evaluation stak, and on,will be pushed on the ode stak.[NOOP-AM℄hr ;NOOP : ; e; stoi . hr ; ; e; stoi[SWAP-AM℄hr ;SWAP : ; v1 : v2 : e; stoi . hr ; ; v2 : v1 : e; stoi[RAN-AM℄hr ;RAN : ; z1 : e; stoi . hr ; ; z2 : e; stoi where 0 � z2 < z1[DUP-AM℄hr ;DUP : ; v : e; stoi . hr ; ; v : v : e; stoiTable 4.8: Various instrutionsThe NOOP ommand does nothing. It is an abbreviation for �No Operation�. SWAP takes two valuesfrom the top of the stak, and swaps them so that the one on top will be swithed with the one lyingright after it. RAN returns a value between 0 and z1 � 1, where z1 lies on top of the evaluation stak,and pushes it onto the stak. The DUP instrution takes a value from the stak and pushes it bak tothe stak twie.4.3 Program ExampleTable 4.9 shows a small AWLAM program.1. PUSH 1 5. EQ 9. SUB2. LABEL n1 6. NEG 10. JUMP n13. DUP 7. JUMPF n2 11. LABEL n24. PUSH 0 8. PUSH 1 12. POPWhere n1 = newLabeln1 and n2 = newLabeln2Table 4.9: Example AWLAM instrution sequene.In the AWLAM program in table 4.9, the value 1 is pushed onto the stak. This value is then dupliatedso that we have 2 of the same value in the two top plaes of the stak. 0 is then pushed on top of thestak. We now proeeds to ompare the two top values of the stak(0 and 1), the truth value of this ispushed on top of the stak. We then pop this value, negate it, and push the new truth value. After thisif the value is ff the program jumps to the label n2. Beause the value is tt the program simply ontinuesto the next instrution. Now 1 is pushed on top of the stak, and then pop the two topmost values o�57

4.4. SUMMARY CHAPTER 4. AWLAMthe stak, subtrats the �rst value from the seond value, and push this new value onto the stak. Theprogram now enounters JUMP n1. This means that the next instrution is the one diretly followingLABELn1whih is DUP. The program now goes through the above desribed phases until JUMPFn2is enountered. Beause the value on top of the stak is ff , the program now jumps to the instrutiondiretly following LABEL n2. This instrution is POP whih as the name implies pops the topmostvalue of the stak. After this there are no more instrutions and the program is ompleteTo illustrate how the transitions of AWLAM progress, we will make a omputation sequene of oursmall example. Initially all the program ode is on the ode stak, and the omputation starts with anempty evaluation stak. Sine it would take up to muh spae to write the entire ode stak at eahon�guration, we just write inst : to illustrate, that after the topmost instrution the rest of the stakfollows. Also eah instrution is pre�xed with it's line number to make the omputation sequene moreunderstandable. Registers Code stak Evaluation stak Storagehr; 1:PUSH 2 : ; �; stoi. hr; 2: LABEL n1 : ; 1; stoi. hr; 3:DUP : ; 1; stoi. hr; 4:PUSH 0 : ; 1 : 1; stoi. hr; 5:EQ : ; 0 : 1 : 1; stoi. hr; 6:NEG : ; ff : 1; stoi. hr; 7: JUMPF n2 : ; tt : 1; stoi. hr; 8:PUSH 1 : ; 1; stoi. hr; 9: SUB : ; 1 : 1; stoi. hr; 10: JUMP n1 : ; 0; stoi. hr; 3:DUP : ; 0; stoi. hr; 4:PUSH 0 : ; 0 : 0; stoi. hr; 5:EQ : ; 0 : 0 : 0; stoi. hr; 6:NEG : ; tt : 0; stoi. hr; 7: JUMPF n2 : ; ff : 0; stoi. hr; 12:POP : ; 0; stoi. hr; �; �; stoiTable 4.10: Computation sequene of the program in table 4.9The omputation in table 4.10 is an example of a terminating omputation, beause it is obviouslynot possible to make any transitions from the �nal on�guration, sine there are no more instrutions.Furthermore the omputation sequene ends in a terminal on�guration, whih means that the odeomponent is empty.If we appended the instrution ADD to the sequene, then the sequene would still terminate, but itwould end in a stuk on�guration, sine ADD needs two numbers on the stak to make a transition. Inontrast to a terminating omputation is a omputation whih does not terminate. Suh a omputationis alled a looping omputation sequene. We will need these onepts when proving the orretness ofthe translation from AWL to AWLAM, so we will make a formal de�nition.4.4 SummaryIn this hapter we have given a de�nition of the AM. A entral question when designing an AM is at whatlevel should it be. Should it be as low level as possible, or should it be allowed to put in some abstratmehanisms, whih will make it more high level. We have tried to keep the AM as low level as possiblebut have inluded a few mehanisms of abstration. A entral mehanism that we have added is relativeaddressing. We refer to memory loations relatively from registers whih makes it a lot easier to workwith the AM. Also we use a ode stak to yle through the ode, and a program ounter when exeuting58

CHAPTER 4. AWLAM 4.4. SUMMARYa jump. Using a ode stak is not the most e�ient way to design an AM, but it gives a model whihis easier to illustrate, and the di�erene from making a ode stak versus for example using a programounter register only, is not really that big. The main issue here is that the AM de�ned at �rst may notbe the �nal AM. As suh it is possible to master the omplexity in a number of steps, whatever seemsreasonable, and the AM de�ned here should be seen as an intermediate result, and not as a representationof how the AM will atually be implemented.Another entral onept is how the instrution set is laid out. How many instrutions should there be.Should there be any omposite instrutions or helping funtions to ease the job of translating. We dohave some mehanism helping us, but have tried to limit these.Sine all evaluation is done on a stak, it may be seen as a stak mahine. But we also do use registersto refer memory loations in an easier way, and to keep trak of ertain values and sope.With the de�nition of AWL and the de�nition of the abstrat mahine, we are now ready to see how thetranslation of AWL ode into AM instrutions is done. This is the topi of the next hapter.

59

Chapter 5Code GenerationIn this hapter we will de�ne translation funtions whih translates AWL to AWLAM. The translationfuntions are divided into ategories, whih are explained as they appear. To reate a proper translation,it has been neessary to make protools desribing how e.g. a proedure is alled. It should also be notedthat the translation has not been optimized for performane in any way.5.1 ProtoolsIn this setion we will in general terms desribe what happens when a proedure all and a all to an anttype is enountered.When a proedure all is enountered the following happens.Proedure Call1. Plae the value of [NEXT ℄on top of the stak2. Plae the value of[LS℄ on top of the stak.3. Plae the return address on top of the stak4. The value of [LS℄ is set to the value of [NEXT ℄.5. Plae the arguments value on the stak.6. Give the ontrol to the proedure.Inside the Proedure1. Save the arguments on top of the stak.2. perform any delarations and ommands found in the body of the proedure.3. Plae the return value if any in the base of [LS℄ (0[LS℄)4. Pop the return address from the stak and jump to this.After Exiting the Proedure1. Pop the topmost value of the stak, and set [LS℄ to this value.60

CHAPTER 5. CODE GENERATION 5.2. FUNCTIONS2. Pop the topmost value of the stak, and set [NEXT ℄ to this value.3. If there is a return value, this is found at the base of [NEXT ℄ (0[NEXT ℄)Before entering a proedure the old state of the program is saved along with where we want the thereturn value to be, if any. The proedure then enters the proedure. After delaring the variables found,and exeuting the ommands that is inside the proedure body, the return address is saved in the base of[LS℄, and the return value is popped from the stak, and then jumps to this loation. When the programhas left the proedure, [NEXT ℄ and [LS℄ is restored to its old values.When a all to an ant type is enountered the following happensCall an Ant Type1. Update CT to point to the address spae assoiated with the urrent team.2. Update CA to point to the address spae assoiated with the urrent ant.3. Plae the value of [NEXT ℄on top of the stak4. Plae the value of[LS℄ on top of the stak.5. Plae the return address on the stak6. Jump to the ant type odeInside Ant Type1. Save the return address from the top of the stak.2. Exeute the delarations and ommands found within the ant type body. Team mem is loadedrelative to CT, and ant mem is loaded relatively to CA.3. Pop the return address from the stak and jump to this.After Exiting the Ant Type1. Pop the topmost value of the stak, and set [LS℄ to this value.2. Pop the topmost value of the stak, and set [NEXT ℄ to this value.Before entering an ant type, the old state of the program is saved The ant type all then enters the anttype instrutions. After exeuting the instrutions, the return value is saved in the base of [LS℄, and thereturn address is popped from the stak, and then jumps to this loation. When the program has leftthe proedure, [NEXT ℄ and [LS℄ is restored to its old values.5.2 FuntionsSine we do not have variables in AWLAM we need a method to remember whih storage loation agiven variable is bound to. We therefore de�ne the funtion mlo.mlo : ProName�Var ,! Z61

5.3. CODE GENERATION CHAPTER 5. CODE GENERATIONwhere the set ProName is de�ned as ProName = RuleName [TurnName [AntTypeName.We will use the meta variable p to referene elements in ProName.We do not have proedures either, so we need a way to remember whih label prepends the translationof a given proedure. For that purpose we de�ne plo. Note that labels are in fat just natural numbers.plo : ProName ,! ZFinally we de�ne the funtion tlo whih maps team variable names to the �rst storage loation alloatedto the given team. tlo : Var ,! LoUpdating the FuntionsInstead of updating the funtions with the orret values during the atual translation, we will speifyhow they an be updated before this proess. Doing that will allow us to assume that they are de�nedorretly during the translation. Figure 5.1 shows the general idea on how to update mlo and plo.During translation we run through the AWL soure program. This run-through will be done one beforethe atual translation only to map variables, proedures and teams to ertain values. We an map eahvariable to a relative storage loation inside a proedure, and we an map eah proedure to the numberit was delared as.When we enounter a team delaration, it is a simple task of alulating the �rst storage loation thatwill be alloated to that team. Similar alulations are desribed in the operational semantis of AWL.We an then update tlo with the orret loation.5.3 Code GenerationIn this setion we will de�ne the translation funtions.5.3.1 Arithmeti ExpressionsFor the arithmeti expressions we have the total funtion:CA : AExpr! (ProName ,! Code)whih states that given a arithmeti expression and a proedure name, we will get translated ode. Weneed the proedure name, so we an determine the relative storage loations of variables.In the ode generation for the arithmeti operations, we have swapped the arguments, so that they willbe evaluated in the orret order. We use mlo to evaluate a variable x as the ontents of the storageloation mlo(p; x) relatively to the loal sope base LS inside the given proedure p . Evaluating avariable means pushing it onto the evaluation stak.When alling a proedure we �rst evaluate the atual parameters, using the ode translation funtionCPA [[PA℄℄ de�ned in setion 5.3.12. We then insert a CALL instrution, whih jumps to the labelmapped in plo for the given proedure name. Aording to the de�ned protools, we an now feth thereturn value from storage loation 0 relatively to the register NEXT.The instrutions mem, tmem and pmem loads the ontents of their mapped storage loation relativelyto their base registers CM, CTM and CAM onto the stak.62

CHAPTER 5. CODE GENERATION 5.3. CODE GENERATION

world(300,20,50)
{
 common var rLeft: integer=5;
 team var t1:integer;
 private p1[4]:integer;

}

rule r(..){

 var rx : integer = 0;
 array rz[4]: integer = 0;
 var ry : integer = 0;
}

turn t(..){

 var sx : integer = 30;
 var sy : integer = 0;
}

anttype at{

 var atx : integer = 0;
}

main{

 var mx : integer = 0;
}

mloc(r, rx) = 0
mloc(r, rz) = 1
mloc(r, ry) = 5

mloc(t, sx) = 0
mloc(t, sy) = 1

mloc(at, atx) = 0

mloc(main, mx) = 0

ploc(main) = 3

ploc(at) = 2

ploc(t) = 1

ploc(r) = 0

mloc(memory, p1) = 2
mloc(memory, t1) = 1
mloc(memory, rLeft) = 0

Figure 5.1: De�nition of mlo, plo and tlo
63

5.3. CODE GENERATION CHAPTER 5. CODE GENERATIONCA [[n℄℄ p = PUSH nCA [[x℄℄ p = LOAD n [LS℄ where n = mlo (p; x)CA [[x [ae℄℄℄ p = CA [[ae℄℄ : PUSH n : ADD : LOADS [LS℄ where n = mlo (p; x)CA [[ae1+ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : ADDCA [[ae1�ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : SUBCA [[ae1�ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ :MULTCA [[ae1=ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : DIVCA [[(ae)℄℄ p = CA [[ae℄℄CA [[r (PA)℄℄ p = CPA [[PA℄℄ : CALL n1; n2 : LOAD 0 [NEXT ℄ where n1 = plo(p) andn2 = parameter ountCA [[random(ae)℄℄ p CA [[ae℄℄ : RANCA [[mem x; ℄℄ p = LOAD n [CM ℄ where n = mlo (memory; x)CA [[tmem x; ℄℄ p = LOAD n [CTM ℄ where n = mlo (memory; x)CA [[pmem x; ℄℄ p = LOAD n [CAM ℄ where n = mlo (memory; x)CA [[getProperty(ae);℄℄ p = CA [[ae℄℄ : LOADS [SD℄Table 5.1: Translation of AExp
5.3.2 Boolean Expressions
For boolean expressions we have the total funtion:

CB : BExpr! (ProName ,! Code)
The translation of boolean expressions are very similar to the translation of arithmeti expression. Sinewe only have instrutions for the relational operations �less than or equals� (LE) and �equals� (EQ), weuse a ombination of these and NEG to implement the other relational operations. Table 5.2 illustratesthe translation of boolean expression. 64

CHAPTER 5. CODE GENERATION 5.3. CODE GENERATIONCB [[true℄℄ p = TRUECB [[false℄℄ p = FALSECB [[x℄℄ p = LOAD n [NEXT ℄ where n = mlo (p; x)CB [[x [ae℄ ; ℄℄ p = CA [[ae℄℄ : PUSH n : ADD : LOADS [LS℄ where n = mlo (p; x)CB [[ae1 == ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : EQCB [[be1 == be2℄℄ p = CB [[be2℄℄ : CB [[be1℄℄ : EQCB [[de1 == de2℄℄ p = CD [[de2℄℄ : CD [[de1℄℄ : EQCB [[ae1! = ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : EQ : NEGCB [[be1! = be2℄℄ p = CB [[be2℄℄ : CB [[be1℄℄ : EQ : NEGCB [[de1! = de2℄℄ p = CD [[de2℄℄ : CD [[de1℄℄ : EQ : NEGCB [[ae1>ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : LE : NEGCB [[ae1<ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : EQ : NEG :CA [[ae2℄℄ : CA [[ae1℄℄ : LE : ANDCB [[ae1>=ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : EQCA [[ae2℄℄ : CA [[ae1℄℄ : LE : NEG : ANDCB [[ae1 <= ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : LECB [[be1and be2℄℄ p = CB [[be2℄℄ : CB [[be1℄℄ : ANDCB [[be1or be2℄℄ p = CB [[be2℄℄ : CB [[be1℄℄ : ORCB [[(be)℄℄ p = CB [[be℄℄CB [[!be℄℄ p = CB [[be℄℄ : NEGCB [[r (PA)℄℄ p = CPA [[PA℄℄ : CALL n1; n2 : LOAD 0 [NEXT ℄ where n1 = plo(p) , andn2 = parameter ountCB [[mem x℄℄ p = LOAD n [CM ℄ where n = mlo (memory; x)CB [[tmem x℄℄ p = LOAD n [CTM ℄ where n = mlo (memory; x)CB [[pmem x℄℄ p = LOAD n [CAM ℄ where n = mlo (memory; x)CB [[getProperty(ae)℄℄ p = CA [[ae℄℄ : LOADS [SD℄Table 5.2: Translation of BExp
5.3.3 Diretion ExpressionsFor the diretion expressions we have the total funtion:

CD : DExpr! (ProName ,! Code)
The translation of diretion expressions is similar to the translation of arithmeti and boolean expressions,and will stand unommented. The translation is shown in table 5.3.65

5.3. CODE GENERATION CHAPTER 5. CODE GENERATIONCDV [[var x : type = exp;DV ℄℄ p = CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄CDV [[�℄℄ p = NOOPTable 5.4: Translation of DeVarCD [[enter℄℄ p = CENTERCD [[up℄℄ p = UPCD [[down℄℄ p = DOWNCD [[right℄℄ p = RIGHTCD [[left℄℄ p = LEFTCD [[x℄℄ ; p = LOAD n [LS℄ where n = mlo (p; x)CD [[(de)℄℄ p = CD [[de℄℄CD [[r (PA)℄℄ ; p = CPA [[PA℄℄ : CALL n1; n2 : LOAD 0 [NEXT ℄ where n1 = plo(p) , andn2 = parameter ountCD [[mem x; ℄℄ p = LOAD n [CM ℄ where n = mlo (memory; x)CD [[tmem x; ℄℄ p = LOAD n [CTM ℄ where n = mlo (memory; x)CD [[pmem x; ℄℄ p = LOAD n [CAM ℄ where n = mlo (memory; x)CD [[x [ae℄ ; ℄℄ ; p = CA [[ae℄℄ : PUSH n : ADD : LOADS [LS℄ where n = mlo (p; x)CD [[getProperty(ae);℄℄ p = CA [[ae℄℄ : LOADS [SD℄Table 5.3: Translation of DExp5.3.4 Variable DelarationsTo translate variable delarations we de�ne two funtionCDV : DeVar! (ProName ,! Code)As with the semanti rules of a variable delaration, the ode translation is reursive. Sine we alreadyhave the mapping of eah variables relative storage loation, we only need to save the value of the variablein the next free storage loation, and then update the NEXT register to point at the next free loation.Table 5.4 de�nes the funtion CDV .5.3.5 Array DelarationsThe translation funtion for array delarations is spei�ed asCDA : DeArr! (ProName ,! Code)and de�ned in table 5.5 . The translated instrutions reate a looping instrution sequene, whih walksthrough the storage loations of the array, and assigns the given value. CDA is de�ned reursively.5.3.6 Ant Type DelarationsWe translate ant type delarations using the funtion66

CHAPTER 5. CODE GENERATION 5.3. CODE GENERATIONCDA [[array x [n℄ : type = exp;DA℄℄ p = PUSH n : LABEL n1 : DUP : PUSH 0 : EQ : NEG : JUMPF n2 :CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : PUSH 1 : SWAP :SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄where n1 = newlabel1 and n2 = newlabel2CDA [[�℄℄ p = NOOPTable 5.5: Translation of DeArrCDAT [[anttype at fDV DASgDAT ℄℄ p = JUMP n2 : LABEL n1 : CDV [[DV ℄℄ : CDA [[DA℄℄ :CS [[S℄℄ : RETURN : LABEL n2where n1 = newlabel1 , n2 = newlabel2and plo(p) = n1CDAT [[�℄℄ p = NOOPTable 5.6: Translation of DeATCDAT : DeAT ! (ProName ,! Code)de�ned in table 5.6. We see that the �rst instrution in the translated sequene is a JUMP instrution,whih jumps to the end of the sequene. This ensures that the delarations and ommands inside the anttype is not omputed during the delaration of the ant type. CDAT uses the ode translation funtionsfor variable and array delarations to delare loal data, and the ode translation funtion for ommands(de�ned in setion 5.3.14) to exeute its ode. As de�ned in the protools in setion 5.1 the RETURNinstrution return ontrol to wherever the ant type was alled from.5.3.7 Rule DelarationsThe translation of rule delarations is expressed by the funtionCDR : DeRule! (ProName ,! Code)de�ned in table 5.7. The translation is very similar to the translation of ant type delarations, howeversine rules an take parameters, we also need to evaluate those. For this purpose we use the translationfuntions CPF and CPA de�ned in setion 5.3.12. We see that the translation of a rule with or withouta return type results in the same sequene of AWLAM instrutions.5.3.8 Turn DelarationsWe de�ne the translation funtionCDT : DeTurn! (ProName ,! Code)to translate turn delarations. The funtion is further de�ned in table 5.8, and is idential to thetranslation of rule delarations. 67

5.3. CODE GENERATION CHAPTER 5. CODE GENERATIONCDR [[rule r (PF) : typefDV DASgDR℄℄ p = JUMP n2 : LABEL n1 : CPF [[PF ℄℄ : CDV [[DV ℄℄ :CDA [[DA℄℄ : CS [[S℄℄ : RETURN : LABEL n2where n1 = newlabel1 , n2 = newlabel2 and plo(p) = n1CDR [[rule r (PF) fDV DASgDR℄℄ p = JUMP n2 : LABEL n1 : CPF [[PF ℄℄ : CDV [[DV ℄℄ :CDA [[DA℄℄ : CS [[S℄℄ : RETURN : LABEL n2where n1 = newlabel1 , n2 = newlabel2and plo(p) = n1CDR [[�℄℄ p = NOOPTable 5.7: Translation of DeRuleCDT [[turn t (PF) fDV DASgDT ℄℄ p = JUMP n2 : LABEL n1 : CPF [[PF ℄℄ : CDV [[DV ℄℄ :CDA [[DA℄℄ : CS [[S℄℄ : RETURN : LABEL n2where n1 = newlabel1 , n2 = newlabel2and plo(p) = n1CDT [[�℄℄ p = NOOPTable 5.8: Translation of DeTurn5.3.9 Team DelarationsWhen a team is delared, we need to update ertain storage loations (see the de�nition of the transitionssystem for TeamDe for details). We also need to alulate the next free storage loation, whih meansjumping over all loations alloated to a team. We an make this alulation at translation time (asopposed to doing it at runtime), sine all the numbers needed in the alulation is known - e.g. themaximum ant ount is programmed as an integer literal, so we an read the number diretly. Had it beenan expression the alulation ould not have been done at translation time, sine we would not knowwhih number the expression would evaluate to.To translate the team delarations we have the funtionCDT EAM : DeTeam! (ProName ,! Code)de�ned by table 5.9.5.3.10 Common Memory DelarationsCommon memory variables are delared almost idential to normal variables. The only di�erene is thatbesides making the delaration we also update the storage loation ontaining the number of ommondelarations made. We have the funtionCDMC : DeMC! (ProName ,! Code)whih is de�ned in table 5.10 68

CHAPTER 5. CODE GENERATION 5.3. CODE GENERATIONCDTEAM [[reateTeam(x);DTEAM ℄℄ p = LOAD 3 [SD℄ : PUSH ts : SAVES [SD℄ :LOAD 0 [SD℄ : RAN : PUSH 2 : PUSH ts : ADD : SAVE [SD℄ :LOAD 0 [SD℄ : RAN : PUSH 3 : PUSH ts : ADD : SAVE [SD℄ :LOAD 3 [SD℄ : PUSH 1 : ADD : SAVE 3 [SD℄ :PUSH n : SAVEREG [NEXT ℄ : CDTEAM [[DTEAM ℄℄where ts = tlo(x) andn = ts+ 4 + teambrain delaration ount+(2 + private delaration ount) � ant ountCDTEAM [[�℄℄ p = NOOPTable 5.9: Translation of DeTeamCDMC [[ommonvar x : type = exp;CDMC ℄℄ p = CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXTLOAD 6 [SD℄ : PUSH 1 : ADD : SAVE 6 [SD℄ : CDMC [[DMC ℄℄where n = mlo (memory; x)CDMC [[�℄℄ p = NOOPTable 5.10: Translation of DeMC5.3.11 Teambrain and Private Memory DelarationsWhen delaring a teambrain or a private memory variable there are no assignment inluded. Sinewe have already determined the relative storage loation of the variables, we only need to update theloations dediated to the number of teambrain and private memory alloations made.We have the funtions CDMT : DeMT! (ProName ,! Code)and CDMP : DeMP! (ProName ,! Code)de�ned in the tables 5.11 and 5.12.CDMT [[teambrain var x : type;CDMT ℄℄ p = LOAD 7 [SD℄ : PUSH 1 : ADD : SAVE 7 [SD℄ : CDMT [[CDMT ℄℄CDMT [[�℄℄ p = NOOPTable 5.11: Translation of DeMT69

5.3. CODE GENERATION CHAPTER 5. CODE GENERATIONCDMP [[private var x : type;CDMP ℄℄ p = LOAD 8 [SD℄ : PUSH 1 : ADD : SAVE 8 [SD℄ : CDMP [[CDMP ℄℄ pCDMP [[�℄℄ p = �Table 5.12: Translation of DeMP5.3.12 Formal and Atual ParametersTogether formal and atual parameters delarations perform the funtion of a variable delaration. Theatual parameters are plaed on the stak, and the translation of the formal parameters stores the atualparameters in the alloated storage loations.We have the funtions CPF : FParm! (ProName ,! Code)and CPA : AParm! (ProName ,! Code)de�ned in table 5.3.12.CPF [[var x : type;PF ℄℄ p = SAVE 0 [NEXT ℄ : NEXT : CPF [[PF ℄℄CPF [[�℄℄ p = NOOPCPA [[ae;PA℄℄ p = CPA [[PA℄℄ : CA [[ae℄℄CPA [[�℄℄ p = NOOPTable 5.13: Translation for formal and atual parameters5.3.13 WorldThe translation of the world onstrut is atually the translation of the entire program. All othertranslation funtions are alled from CW expressed asCW :World! (ProName ,! Code)and de�ned in table 5.14. We see that we make a alulation at translation time. We need to updatethe register NEXT to point at the address following the food alloations. We an make this alulationnow, beause we know both the number of dediated storage loations and the maximum piees of foodallowed. 70

CHAPTER 5. CODE GENERATION 5.3. CODE GENERATIONCW [[world (n1; n2; n3) fDMCDMTDMP = PUSH n1 : SAVE 0 [SD℄ : PUSH n2 : SAVE 1 [SD℄ :DRDTDATmainfDTEAMDVDASgg℄℄ p PUSH n3 : SAVE 2 [SD℄ : PUSH nnext : SAVEREG [NEXT ℄CDMC [[DMC ℄℄ : CDMT [[DMT ℄℄ : CDMP [[DMP ℄℄ : CDT EAM [[DTEAM ℄℄ :CDR [[DR℄℄ : CDT [[DT ℄℄ : CDAT [[DAT ℄℄ : LABEL 0 :CDV [[DV ℄℄ : CDA [[DA℄℄ : CS [[S℄℄where nnext = 9 + food ount � 2Table 5.14: Translation for world delaration
5.3.14 Commands
To translate ommands we have the funtion

CW :World! (ProName ,! Code)
de�ned in table 5.16.The translation of the AWL ommands are for the most part straight forward. There are however aouple of onstruts, whih need explaining. The translation of proess needs to update the storageloation dediated to the urrent team and urrent ant. To do so it evaluates its parameters to the stak,and then saves the values and alls the given ant type.The return ommand is translated to instrutions, whih saves the parameters at loation 0 relatively tothe register LS - as spei�ed in our protools. The skip ommand translates to a NOOP (no operation)instrution, sine it hanges nothing. 71

5.4. SUMMARY CHAPTER 5. CODE GENERATION
CS [[r (PA)℄℄ p = CPA [[PA℄℄ : CALL n1; n2where n1 = plo(r) and n2 = parameter ountCS [[x = exp;℄℄ p = CE [[exp℄℄ : SAVE n [LS℄where n = mlo(p; x)CS [[x [ae℄ = exp; ℄℄ p = CE [[exp℄℄ : CA [[ae℄℄ : PUSH n : ADD : SAVES [LS℄where n = mlo (p; x)CS [[endturn t (PA)℄℄ p = CPA [[PA℄℄ : CALL n1; n2where n1 = plo(t) and n2 = parameter ountCS [[proess (ae1; ae2; at)℄℄ p = CA [[ae1℄℄ : SAVE 4 [CT ℄ : CA [[ae2℄℄ :SAVE 5 [CA℄ :: CALLAT n :where n = plo(at)CS [[while(be)fSg℄℄ p = LABEL n1 : CB [[be℄℄ : JUMPF n2 :CS [[S℄℄ : JUMP n1 : LABEL n2where n1 = newlabel1and n2 = newlabel2CS [[if(be)fS1gelsefS2g℄℄ p = CB [be℄ : JUMPF n1 : CS [[S1℄℄ :JUMP n2 : LABEL n1 : CS [[S2℄℄ : LABEL n2where n1 = newlabel1 and n2 = newlabel2CS [[mem x = exp; ℄℄ p = CE [[exp℄℄ : SAVE n [CM ℄Where n = mlo (memory; x)CS [[tmem x = exp; ℄℄ p = CE [[exp℄℄ : SAVE n [CTM ℄Where n = mlo (memory; x)CS [[pmem x = exp; ℄℄ p = CE [[exp℄℄ : SAVE n [CAM ℄Where n = mlo (memory; x)CS [[setProperty(ae; exp);℄℄ p = CE [[exp℄℄ : CA [[ae℄℄ : SAVES [SD℄CS [[S1S2℄℄ p = CS [[S1℄℄ : CS [[S2℄℄CS [[return exp;℄℄ p = CE [[exp℄℄ : SAVE 0 [LS℄CS [[skip;℄℄ p = NOOP :Table 5.16: Translation of ommands5.4 SummaryWe have now de�ned how to translate an AWL program to a sequene of AWLAM instrutions througha list of translation funtions. We have made suh funtions for eah syntatial onstrut of AWL. Thequestion that now remains is how to prove that the translation is in fat orret. Fortunately that is thetopi of the next hapter. 72

Chapter 6Provable Corret ImplementationIn the last hapter we de�ned the abstrat mahine AWLAM, and onstruted ode generating funtions,whih translated AWL ommands into a sequene of AWLAM instrutions. In this hapter we will showthat the translation is in fat orret, and we will de�ne what orret means in this ontext. This hapterwill only show a hand-full of proofs - the remaining an be found in Appendix A.To avoid onfusion we will refer to AWLAM as AM.6.1 CorretnessWe de�ne the translation of an AWL program into AM ode to be orret if (and only if) the exeution ofthe AM ode on the abstrat mahine will give the same result as spei�ed by the operational semantisfor AWL.Sine AWL and AM has the same type of storage, yielding the same result means ending up with identialstorage states.In the following setions we will prove that the translation funtions from the previous hapters areorret. We will divide the proofs into� proving the orret implementation of delarations,� proving the orret implementation of expressions and� proving the orret implementation of ommands.However we �rst need to desribe the tehniques, whih we will use to make the proof.6.2 Proof TehniquesWe will ondut proofs by the two di�erent proof tehniques:� indution on the shape of derivation trees, and� indution on the length of omputation sequenes.Below follow a short desription of eah of the two tehniques.Indution on the shape of derivation trees 1Proofs by indution on the shape of derivation trees are onduted on the following manner.1[2, p. 28℄ 73

6.3. MEANING OF COMMANDS CHAPTER 6. PROVABLE CORRECT IMPLEMENTATION� We prove that the property, whih we are trying to prove, holds for all simple derivation trees byshowing that it holds for the axioms of the transition system.� We then prove that the property holds for all omposite derivation trees. This is done by assumingfor eah semanti rule that the property holds for the premises of the rule, and then proving thatit also holds for the onlusion provided that the side onditions of the rule are satis�ed.Indution on the length of omputation sequenes 2Proofs by indution on the length of omputation sequenes are onduted in the following manner.� We prove that the property holds for all omputation sequenes of length 0� We then prove that the property holds for all other derivation sequenes by �rst assuming that itholds for all sequenes at length most k, and then showing that it then also holds for sequenes ofof length k + 1.6.3 Meaning of CommandsFor AWL we de�ne the meaning of ommands S as a partial funtion from Store to Store. 3SAWL : Com! (Store ,! Store)whih means that for eah ommand S, we have a partial funtion SAWL [[S℄℄ 2 Store ,! Store. Thisfuntion is de�ned asSAWL [[S℄℄ sto = � sto0undefined if envV ; envP ` hS; stoi ! sto0otherwiseWe also de�ne the meaning of a sequene of instrutions on AM as a partial funtion from Store toStore. M : Code! (Store ,! Store)and more spei� M [[℄℄ sto = (sto0undefined if hr; ; �; stoi .� hr0; �; e; sto0iotherwiseSo using these funtions, we an determine how AWL ommands or AM instrutions will hange thestorage.Using the funtion M we an now also speify the meaning of a ommand S by translating it intoAM instrutions and then exeuting the instrutions on the abstrat mahine. We de�ne the funtionSAM [[S℄℄ : Com! (Store ,! Store) bySAM [[S ℄℄ = (MÆ CS) [[S ℄℄ =M (CS [[S ℄℄)2[2, p. 37℄3[2, p. 31℄ 74

CHAPTER 6. PROVABLE CORRECT IMPLEMENTATION 6.4. NOTATION6.4 NotationSine we do not want to make the proofs of orretness to hard to read, we will not write e.g. envp; envV ; sto `ae!ae z when we need to imply that a arithmeti expression evaluates to the number z in the semantisof AWL. Instead we will just assume that the reader understands that this is the ase and use z. We willof ourse only do this when there an be no doubt. If we do need to write the omplete transition rule,we will for the most part omit the �rst part and just write e.g. ae!ae z.We will make the following shortuts:z where N [[n℄℄ = z and where envp; envV ; sto ` ae!ae zb where envp; envV ; sto ` be!be bd where envp; envV ; sto ` de!de dv where envp; envV ; sto ` exp!exp vThis means that if we enounter e.g. the ommand PUSH n we an write hr;PUSH n; �; stoi.hr; �; z; stoiwithout any further explanation.6.5 Variable DelarationsBefore proving the orretness of variable delarations, we must de�ne whih properties that must hold.The intuitive orretness is that the storage states are idential in the two semantis after delaring avariable. We would also like the register NEXT to point to the same storage loation as the pointernext in the semantis of AWL. We de�ne the following lemma to express this.Lemma 6.5.1 For all variable delarations we have thatif hDV ; envV ; stoi ! (env0V ; sto0) then hr; CDV [[DV ℄℄ p; �; stoi .� hr0; �; �; sto0iwhere env0V (next) = r0(NEXT)So eah variable must be stored at the same storage loation in the two semantis. Also the pointer nextmust point to the same loation as the register NEXT after delaration.Proof: We will make the proof by indution on the shape of the derivation tree.The ase: [Dv-variable-delaration-empty℄We assume that h"; envV ; stoi !DV (envV ; sto). Using the translation funtion we get that CDV [[�℄℄ p =NOOP. Using the semantis of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiwhih ompletes the proof of this ase.The ase: [Dv-variable-delaration℄We assume that hvar x :type=exp;DV ; envV ; stoi ! (env0V ; sto0) holds beause75

6.6. ARRAY DECLARATIONS CHAPTER 6. PROVABLE CORRECT IMPLEMENTATIONhDV ; envV [x 7! (type; l)℄ [next 7! new (l)℄ ; sto [l 7! v ℄i !DV �env0V ; sto0�(whih is the premise)beause l = envV (next).Using the ode translation funtion we get thatCDV [[var x : type=exp;DV ℄℄ p = CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ pWe an now make the following omputation sequene.hr; CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ p; �; stoi .�hr0;SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ p; v; stoi .hr00;NEXT : CDV [[DV ℄℄ p; �; sto00i .hr000;CDV [[DV ℄℄ p; �; sto00iWe see that sto00 = [l 7! v℄, so it follows that the variables are stored at the orret loations.Applying the indution hypothesis to the premise we get thathr00;CDV [[DV ℄℄ p; �; sto00i .� hr0; �; �; sto0iwhih ompletes the omputation whih ends in the required state. It follows from the omputationsequene that env0V (next) = r0(NEXT). This ompletes the proof of lemma A.1.1.6.6 Array DelarationsWe have allready de�ned a lemma expressing the orretness of variable delarations. The orretness ofarray delarations are naturally almost idential. We therefore de�ne the following lemma4.Lemma 6.6.1 For all array delarations we have thatif hDA; envV ; stoi ! (env0V ; sto0) then hr; CDA [[DA℄℄ p; �; stoi . hr0; �; �; sto0iwhere r(NEXT) = envV (next)So eah array must be stored at the same storage loations in the two semantis. Also the pointer nextmust point to the same loation as the register NEXT after delaration.Proof: We will use indution on the shape of the derivation tree to prove lemma A.1.2.The ase: [Da-delaration-empty℄We assume that h�; envV ; stoi !DA (envV ; sto). Using the translation funtion we get that CDA [[�℄℄ p = NOOP,and with the semantis of NOOP we have thathr ;NOOP; �; stoi . hr ; �; �; stoi4[2, p. 73℄ 76

CHAPTER 6. PROVABLE CORRECT IMPLEMENTATION 6.7. ARITHMETIC EXPRESSIONSwhih ompletes the proof of this ase.The ase: [Da-delaration℄We assume that harray x [n℄ :type=exp;DA; envV ; stoi !DA �env0V ; sto0�beause hDA; envV [x 7! (type; l ; z)℄[next 7! new (l ; z))℄; sto[li 7! v ℄i !DA �env0V ; sto0�where i 2 [0::z � 1℄ and l = envV (next) and z > 0.Using the ode translation funtion we get thatCDA [[array x [n℄ : type = exp DA℄℄ p =PUSH n3 : LABEL n1 : DUP : PUSH 0 : EQ : NEG : JUMPF n2 : CE [[exp℄℄ : SAVE 0 [NEXT ℄ :NEXT : PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ pWe an now make the following omputation sequene:�r ; PUSH n3 : LABEL n1 : DUP : PUSH 0 : EQ : NEG : JUMPF n2 : CE [[exp℄℄ : SAVE 0 [NEXT ℄: NEXT : PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; �; sto� .7�r ; CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : PUSH 1 : SWAP :SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e; sto� .�
r 0; PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e; sto0� .�
r 0; JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e0; sto0� .�
r 00; CDA [[DA℄℄ p ; �; sto00� .�hr 0; �; �; sto0iWe get the �rst part of the omputation using the semantis of AM, and we see that sto00 = sto[li 7! v℄where i 2 [0::N [[n℄℄ � 1℄ as required. We get the last part by applying the indution hypothesis to thepremise. This ompletes the proof of lemma A.1.2.6.7 Arithmeti ExpressionsSine the proofs of the three expression types in AWL are pratially idential, we will only show theproof of arithmeti expressions - or at least some of it. The proofs of boolean and diretion expressionsan be found in Appendix A, as an the remaining part of the proof of arithmeti expressions..The intuitive orretness of an arithmeti expression is that it evaluates to the orret number. Sine weare using an evaluation stak in AM this means that the orret value of the expression must be pushedonto the stak. We will de�ne the following lemma to express this.Lemma 6.7.1 For all arithmeti expressions ae we have that 77

6.7. ARITHMETIC EXPRESSIONS CHAPTER 6. PROVABLE CORRECT IMPLEMENTATIONhr ; CA [[ae℄℄ ; �; stoi . hr; �; z; stoiwhere envP ; envV ; sto ` ae!ae z.Furthermore, all intermediate on�gurations of this omputation sequene will have a non-empty evalu-ating stak.Proof: The proof of lemma A.3.1 is done by strutual indution on ae.The ase: [ae-lit℄Using the ode generation funtion CA, we have that CA [[n℄℄ p = PUSH n. From the semantis of AMwe have that hr ;PUSH n; �; stoi . hr0; �; z; stoiand sine n! z in the operational semantis for AWL, we have ompleted the proof for [ae-lit℄.The ase: [ae-var℄We have that CA [[x ℄℄ p = LOAD n [LS ℄, where LS is the register, whih points to the loal base addressof the urrent routine p, and where n = mlo (p; x) (the relative address of x inside p).Using the semantis of AM we have thathr ;LOAD n [LS ℄; �; stoi . hr0; �; sto (r (LS) + z) ; stoiIn the operational semantis of AWL we have that x ! sto (envV (x)). Using the de�nition of LS andmlo we see that r(LS) + z = envV (x), whih ompletes the proof of this ase.The ase: [ae-getProperty℄Using the ode translation funtion we haveCA [[getProperty(ae);℄℄ = CA [[ae℄℄ : LOADS [SD℄and we there have the omputation sequenehr ; CA [[ae℄℄ : LOADS [SD℄ ; �; stoi .�hr 0;LOADS [SD℄ ; z1 ; stoi .hr 00; �; z2 ; stoiTo make the �rst omputation we apply the indution hypothesis to ae, and to make the seond we usethe semantis of LOADS. We see that z2 = sto(z1), and using the rule [ae-getProperty℄ we see that thisis the required result.The ase: [ae-mult℄We have that CA [[ae1 � ae2 ℄℄ = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ :MULT78

CHAPTER 6. PROVABLE CORRECT IMPLEMENTATION 6.8. COMMANDSApplying the indution hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSine we an extend the ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ :MULT; �; stoi .� hr;CA [[ae1 ℄℄ :MULT; z2; stoi .�hr;MULT; z1 : z2; stoiWe now apply the transition rule for MULT, and gethr;MULT; z1 : z2; stoi .� hr; �; (z1 � z2); stoiSine ae1 � ae2 !ae (z1 � z2) in the semantis of AWL, the proof is omplete.6.8 CommandsIn setion 6.3 we de�ned the meaning of ommands and instrutions. We will use these de�nitions tomake a theorem that expresses the orretness of the translation of ommands. The theorem expresses,that if a exeution of S terminates in a state in the semantis of AWL, then it will also terminate in thesemantis of the abstrat mahine AM with the resulting states being equal. This also applies the otherway around. The theorem also expresses that if the exeution of S from one state loops in one of thesemantis then it will also loop in the other.Theorem 6.8.1 For every statement S of AWL we have that SAWL [[S℄℄ = SAM [[S℄℄5The theorem is proved in two stages expressed by lemma A.4.2 and lemma A.4.3.Lemma 6.8.2 For every statement S of AWL and stores sto and sto0, we have thatif hS; stoi ! sto0 then hr; CS [[S℄℄ ; �; stoi .� hr0; �; �; sto0iIf the exeution of S from the store sto terminates in the big step semantis for AWL, then the exeutionof the translated ode from the store sto will also terminate in the semantis for AWLAM and the resultingstores will be equal.6Proof: The proof of lemma A.4.2 is ompleted by indution on the shape of the derivation tree forhS; stoi ! sto0. So we will prove the lemma for eah ommand in AWL.The ase: [s - assign℄We asume that hx = exp; stoi ! sto0 where sto0 = sto[l 7! v℄ , l = envV (x) and exp! v.Using CS we get that5[2, p. 74℄6[2, p. 75℄ 79

6.8. COMMANDS CHAPTER 6. PROVABLE CORRECT IMPLEMENTATIONCS [[x = exp℄℄ p = CE [[exp℄℄ : SAVE n [LS ℄where n = mlo(p; x). From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti rules of AM we gethr0;SAVE n [LS℄; v; stoi . hr00; �; �; sto [(r(LS) + z℄) 7! viSine we have that envV (x) = r(LS) + z using the de�nition of LS , this ompletes the proof.The ase: [s - omp℄Using the semantis of AWL we have that hS1S2; stoi ! sto0 beause hS1; stoi ! sto00 and hS2; sto00i !sto0. Using CS we get that CS [[S1S2 ℄℄ = CS [[S1 ℄℄ : CS [[S2 ℄℄We apply the indution hypothesis to the premises and get that
r; CS [[S1 ℄℄ ; �; sto� .� hr00; �; �; sto00iand
r00; CS [[S2 ℄℄ ; �; sto� .� hr0; �; �; sto0iSine we an extend the ode omponent we get that
r; CS [[S1℄℄ : CS [[S2 ℄℄ ; �; sto� .�
r00; CS [[S2℄℄ ; �; sto00� .� hr0; �; �; sto0iwhih ompletes the proof.The rest of the ases an be found in Appendix A. We will now proeed to prove the following lemma7.Lemma 6.8.3 For every ommand S of AWL and stores sto and sto0, we have thatif hr; CS [[S℄℄ ; �; stoi .k hr0; �; e; sto0i then hS; stoi ! sto0So if the exeution of the ode for S from a storage s terminates, then the AWL semantis of S from swill terminate in a state being equal to the storage of the terminal on�guration.Proof: We will prove lemma A.4.3 by indution on the length k of the omputation sequene on AM. Ifk = 0 then the result holds beause CS[[S ℄℄ = � is impossible. So we assume that it holds for k � k0 andwill prove that it holds for k = k0 + 1. We make a ase study on the ommand S.The ase: x = exp;We have that CS [[x = exp; ℄℄ = CE [[exp℄℄ : SAVE n [LS ℄ , so we assume thathr; CE [[exp℄℄ : SAV E n [LS℄; �; stoi .k0+1 hr0; �; e; sto0i7[2, p. 77℄ 80

CHAPTER 6. PROVABLE CORRECT IMPLEMENTATION 6.9. SUMMARYSine we an split the instrution sequene into two we have thathr;CE [[exp℄℄ ; �; stoi .k1 hr00; �; e00; sto00iandhr; SAV E n [LS℄; e00; sto00i .k2 hr0; �; e; sto0iwhere k1 + k2 = k0 +1. From the expression lemmas we get that sto00 = sto and e00 = v where exp! v .Using the semantis of SAVE we see that sto0 = sto[(r(LS) + z) 7! v℄. It follows from [s - assign℄ thathx = exp;; stoi ! sto0, whih ompletes the proof.The ase: if(be)fS1gelsefS2g trueWe have that CS [[if (b)fS1 gelsefS2 g℄℄ =CB [be℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2We assume thathr;CB [be℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; stoi .k0+1 hr0; �; e; sto0iSine we an split up the ode omponent we gethr; CB [[be℄℄; �; stoi .k1 hr0000; �; e000; sto0000ihr0000;JUMPF n1; e000; sto0000i .k2 hr000; �; e00; sto000ihr000;CS [[S1 ℄℄; e00; sto000i .k3 hr00; �; e0; sto00ihr00;JUMP n2; e0; sto00i .k4 hr0; �; e; sto0iwhere k1 + k2 + k3 + k4 = k0 + 1 and k2; k4 = 1.Sine CB [[be℄℄ and JUMPF does not hange the storage, we have that sto0000 = sto000 and sto00 = sto0.Likewise CS [[S1 ℄℄ and JUMP does not hange the evaluation stak so we have that e00 = e0 = e = �. Weassume that e000 = tt .Sine k3 � k0 we an apply the indution hypothesis to this omputation and then we have thathS1; stoi ! sto0The rule [S-if-true℄ gives the required hif(be)fS1gelsefS2g; stoi ! sto0. The proof of if(be)fS1gelsefS2gfalseis analogous.The remaining proofs of this lemma an be found in Appendix A.6.9 SummaryIn this hapter we have (almost) proved that the translation funtions de�ned in the previous hapterare orret. We an not laim to have proven the total orretness of the translation, sine we have notproved the orretness of rule and ant type delarations due to a lak of time. It's obious that with themahine arhiteture of AWLAM, we are still far from any normal hardware implemented mahine (suh81

6.9. SUMMARY CHAPTER 6. PROVABLE CORRECT IMPLEMENTATIONas the pentium). However we are now one step loser, and with the proof made in this hapter, one ouldarry on towards an even lower level.When making a proof like this, we make a omputation sequene for eah sequene of translated ode.During this proess, one is ertain to �nd errors or misunderstandings in the translated ode. Thisnaturally makes it a very good exerise to do when wanting to translate a programming language intoanother language.In the next hapter we will implement the results of our theoretial work.

82

Bibliography[1℄ Hans Hüttel. Pilen ved træets rod. Aalborg University, 2003.[2℄ Hanne Riis Nielson and Flemming Nielson. Semantis with Appliations. Wiley, revised internetedition edition, July 1999.[3℄ David A. Watt and Deryk F. Brown. Programming Language Proessors in Java: Compilers andInterpreters. Prentie Hall, 2000.

83

Chapter 7ImplementationIn the following setion we will desribe how AWL is implemented from the high-level language tothe running program. First o� we will desribe the proess from the AWL doument to the AWLAMdoument. In this setion we have sanning, parsing, identi�ation, type heking and �nally odegeneration. After this we will desribe how the abstrat mahine works and how we will get from theAWLAM doument to a running program using an interpreter.7.1 Sanning and ParsingFor this task we have hosen to use a tool that does the task for us. We have hosen to use SableCC1,beause it both sans and parses the ode, unlike e.g. JLex that only sans the ode or JCup that onlyparses. Furthermore SableCC produes an abstrat syntax tree that we will use in the later phases ofompiling. The sanner and parser that SableCC generates are based on a kind of Extended Bakus NaurForm (EBNF). This doument an be found in the appendix.In lexial analysis, or sanning as it is also alled, the input program is sanned and divided into tokensthat the parser an use. A token is desribed by its kind and its spelling. This means that in this partof the ompiler, identi�ers, keywords and other single parts of the program are reognized and put into atoken stream. This token stream is then used by the parser, in that it is examined in order to see whetherthe statements made in the original program math those desribed in the grammar.The purpose of parsing is to determine whether a stream of tokens is valid in aordane to the language� and if this is the ase, to group the tokens into larger piees, suh as Commands or Expressions.An important onept in parsing is unambiguity, meaning that a spei� sentene has one and only oneparse tree. The reason for this is that a sentene with more than one parse tree an lead to di�erent endresults. Just onsider the simple mathematial sentene 2+ 2 � 5. To us humans it is easy to see that theresult is 12, namely by unonsiously adding parentheses in order to determine the preedene: 2+(2 �5).To the program, however, if nothing else is spei�ed, the result might as well be 20: (2 + 2) � 5. Lukily,if we have reated our EBNF grammar orretly this should not be a problem.As mentioned earlier in this setion, SableCC makes an abstrat syntax tree for the program. Furthermoreit produes a tree-walker whih is based on an extended visitor pattern.7.2 Identi�ation and Type ChekingUsing the before mentioned abstrat syntax tree, we an now perform identi�ation and type hekingalso known as ontextual analysis.1http://www.sable.org/ 84

CHAPTER 7. IMPLEMENTATION 7.2. IDENTIFICATION AND TYPE CHECKINGExpression type Input Outputor-Expression Boolean � Boolean ! Booleanand-Expression Boolean � Boolean ! Booleanequality-Expression Diretion �Diretion ! BooleanInteger � Integer ! BooleanBoolean � Boolean ! Booleanrelational-Expression Integer � Integer ! Booleanadd-Expression Integer � Integer ! Integermult-Expression Integer � Integer ! Integerunary-Expression Boolean ! BooleanDiretion ! DiretionInteger ! IntegerFigure 7.1: Expression hierarhy�The �rst task of the ontextual analyzer is to relate eah applied ourrene of an identi�erin the soure program to the orresponding delaration.�2To make sure that a program does not violate any ontextual rules, one �rst has to look at identi�ation.What happens in the identi�ation phase is that when an identi�er is enountered, the identi�ationproess heks to see whether this identi�er has been delared earlier in the program. If it has not, thenthe identi�er ought to be about being delared (varident:integer) or else the program is ill formed andan error will be generated.One should notie when reading the above, that in order to positively know whether a reahed identi�erhas previously been enountered, you would have to searh though all of the program examined so far. Inour ase this is not so, however. Instead we will use an identi�ation table, in whih all the identi�ers arestored along with their type and other relevant information. Using this method, when enountering anidenti�er (assuming that this is not the delaration), the table is simply heked for previous ourrenesof the identi�er.�The seond task of the ontextual analyzer is to ensure that the soure program ontains notype errors.�3In type heking we need to make ertain that all expressions yield the expeted type. An example ofthis is the rule VarInit , whih might look like this: var id : integer = 5+5;. Here we need to make surethat the expression 5+5 yields an integer. This is one of the obvious rules � one not so obvious is when,say, a non turn based rule is involved. Here we need to hek whether the argument types sent alongwith the rule all math those expeted. Furthermore we need to hek if the orret type is returnedby the return ommand in the rule, and hek that it is not plaed in suh a way that it will result inunreahable statements.In �gure 7.1 we show the expression hierarhy for AWL. Here we see that if we have the expression5 + 3 � 1 we must �rst evaluate the 3 � 1 part, and then evaluate the result of it along with the 5+part. This is implemented in type hek in a way so that when an Expression is enountered, a methodevalExpression(Expression) is alled. The method �rst heks to see if the expression has any or-Expressions in it � and if not, it ontinues down the list. If it does ontain an or-Expression, the hekedexpression is divide into two parts; the left and right side of the 'or' and uses evalExpression on eahpart. When both parts have done evaluating they return their respetive types to the previous method.The method an then evaluate the two expressions aording to the above rules. What we end up with2[3, page 136℄3[3, page 150℄ 85

7.3. CODE GENERATION CHAPTER 7. IMPLEMENTATIONis either a SimpleType or an error is disovered during the proess. In the latter ase an exeption isthrown.By this we an onlude that if the identi�ation and type heking do not throw any exeptions, theprogram is well formed, and we an proeed to the next step of ompiling whih is the atual odegeneration.7.3 Code GenerationIn ode generation we will ontinue using the abstrat syntax tree generated by SableCC. We will usethe rules for ode generation desribed in hapter 5, and apply these when walking trough the syntaxtree. A more elaborate desription of the funtions in the ode generation an be found in the previousmentioned hapter.The result of ode generation is an intermediate ode doument used by the abstrat mahine AWLAMwhih is desribed next.7.4 AWLAM ImplementationThe implementation of the AWL abstrat mahine follows the operational semantis of AWLAM is loseas possible. The only notable di�erene is the fat that the implementation works with a PC register(program ounter) and the ode is not plaed on a stak, but in (in this ase, simulated) memory. Thisis, however, the way a hardware mahine would have been implemented, and it is merely a slight stepdown the abstration ladder from the operational semantis. The reason for this minor abstration inthe operational semantis is explained in setion 3.The abstrat mahine is implemented in Java, but it ould just as well have been any other programminglanguage. It might have been more pro�table to ode an interpreter in an assembly language, though, butsine the purpose of this one was really not exeution speed, and sine the interpreter is in the peripheryof the projet's subjet, we have hosen to do it in a high-level language. The spei� language Java washosen beause of it being the language of most experiene to the implementer.7.4.1 The Evaluation StakThe standard environment of Java supports an implementation of a stak, whih we have plaed a wrapperaround and used here. The wrapper serves only as an interfae reeiving and returning the basi type intinstead of Objets as is the ase with the standard Java implementation sine ints are what we operateon in the rest of the implementation.This makes it very easy to implement the AWLAM instrutions that operate on the evaluation stak,sine it is just a question of invoking the push and/or pop methods whenever the operational semantisditates it.7.4.2 RegistersThere is a �xed amount of registers to be implemented into the AM. Therefore it was obvious to use anarray whih, in Java terms, has a �xed amount of indexes. For referring to the spei� indexes of thearray, i.e. the spei� registers of the AM, we use so-alled �elds, or �nal variables (onstants). One perindex in the array, eah with a name of a register and with a (�xed) value of an index in the array. Thismakes us able to refer to e.g. the PC register by reg[PC℄, provided the array is alled reg.86

CHAPTER 7. IMPLEMENTATION 7.4. AWLAM IMPLEMENTATION} else if (instr[0℄.equals(�JUMPF�)) {String n = instr[1℄;int z = label(N(n));int b = stak.pop();reg[PC℄ = (b == FALSE ? z : reg[PC℄ + 1);} else if Figure 7.2: Variables equal to those in the operational semantis.} else if(instr[0℄.equals(�JUMPF�)) {reg[PC℄ = (stak.pop() == FALSE ? label(N(instr[1℄) : reg[PC℄ + 1);} else if Figure 7.3: Higher level of optimization.7.4.3 MemoryThe memory, too, is an array. Or in fat, two arrays; one for ode, and one for data. This is not thenormal way of doing so, and it prevents methods suh as self-modifying ode. However, we don't needsuh things in AWLAM and that ombined with the fat that splitting memory into two makes it possiblefor us to keep ode in a string array (as we interpret assembler-like ode and not binary mahine-likeode) and data in an int array, made us hoose to do so. We still use an overall memory size, though,whih is by the way adjustable from the ommand line, and assign only as muh ode memory as neededwhile the rest goes to data memory.As said, all data items are stritly integer values, represented by Java's int type. In AWL, however,we have other basi types, namely booleans and diretions4. They both have a very limited amount ofpossible values, so we solve this by simply assigning an int value to eah boolean and diretion value.To represent these values, we use onstants (again as Java �elds) in order to easily be able to work withthem. This way we an push e.g. a �true� value by stak.push(TRUE); given �stak� is the name ofthe evaluation stak, and �push� is the name of the method that pushes new values into the top of a givenstak. Both is the ase in our situation.7.4.4 InterpretationThe interpretation itself is basially a while onstrut, running as long as the program ounter pointswithin the ode memory. For eah loop, the ode line pointed out by PC is evaluated, and ation is takenaordingly. This ation inludes updating the PC register, whether this means simply inreasing it byone, as in most instrutions, or hanging it to a totally di�erent value, as is the ase with e.g. the JUMPinstrution.Most of the ations performed when an instrution is reognized ould have been formatted quite di�er-ently, and possibly more e�iently. However, we wanted to make a learer onnetion to the operationalsemantis, and therefore we often save a given value in a variable (named as in the operational semantis),just to use it for the last time during the program in the very next Java ode line. See an example of thisin �gures 7.2 and 7.3.In the operational semantis we have funtions for di�erent purposes. An example of this is the N [n℄funtion whih gives the value of a numeral n. Equally we get the �numerals� as strings so this is asuitable reason for onstruting an N(n) method, onverting a string n to an int. The label(l), m(), andr() methods are of the same priniple, only that their funtions are respetively to return the memoryloation pointed to by a label, to return the value of a given memory loation, and to return the value4See e.g. setion 2.8 about these. 87

7.5. SCREENSHOTS CHAPTER 7. IMPLEMENTATIONof a register. All methods are implemented in a very simply way, and from a tehnial point of viewthey ould probably have been omitted � however they serve a purpose of easy understanding as well asreferene to the operational semantis.
7.5 Sreenshots

88

CHAPTER 7. IMPLEMENTATION 7.6. SUMMARY7.6 SummaryIn this hapter we have had a look at some aspets of the implementation in the various stages fromsanning and parsing, through identi�ation and type heking to ode generation, and at last the inter-preter.The sanning and parsing part is in our ase handled by SableCC. Fed with something very lose to anEBNF of the AWL language, the tool provides us with a sanner and parser able to verify a given pieeof AWL ode by produing an abstrat syntax tree and traversing through it using an extended visitor'spattern.Identi�ers are kept trak of by an identi�ation table so that we will not have to look through the wholeprogram every time an identi�er is enountered. Next phase is type heking, where we make sure thatfor e.g. every integer variable delaration, also the value initializing it must be an integer.Code generation is based on the rules set up earlier in this report and produes program ode, interpretableby the AWLAM interpreter.The interpreter itself emulates a mahine, in that it ontains registers, memory and an evaluation stak.It runs through the AWLAM ode from one end to the other, reating on the instrutions it sees, whetherthe instrutions tell the interpreter to alulate something and proeed or jump to another plae in theode.

89

Chapter 8ConlusionIn the preeding hapters we have desribed the development of the programming language AWL. Wewill now ompare what was required of the programming language with what has happened in the report.We will go through these requirements one by one and desribe how we have dealt with the problem1.AWL has to ontain high level language onstruts, suh as in C:We have implemented AWL toontain high-level onstruts suh as while and if statements, along with variable and array delarations.AWL has to provide spei� onstruts for the programmer, so that rules suh as walk(LEFT)areeasy to reate: AWL provides ways for the programmer to delare a rule, and then a way to all thisrule from a ommand or an expression. Furthermore we have provided a onstrut that allows the pro-grammer diret aess to the memory so that reating an ant of moving an ant beomes possible. Thismakes the language very �exible for the programmer using it.AWL has to provide a onstrut to allow the world programmer to move the fous fromone ant and team to another ant and team: AWL ontains a ommand that allows an ant to beproessed i.e. moved or what ever the ant reator wants his or her ant to do.AWL has to provide some �ant memory� whih di�er in sope: In AWL eah ant will have itsown memory, that no other ant an aess. Furthermore AWL provides a team memory that all antsfrom a team an aess and modify, and a ommon memory that all ants regardless of team an aess.AWL has to provide a onstrut for reating teams: We have added a onstrut that an add ateam to a game by a simple delaration.AWL has to ompile to an abstrat mahine, whih we will all AWLAM(AWL AbstratMahine): The abstrat mahine AWLAM has been de�ned and implemented. Also an interpreterto run the ode generated by AWLAM has been de�ned and implemented. This interpreter shows agraphial representation of the game that it interprets.Below we will desribe how the produt of the report adheres to the goals of the report. We will, likewith the requirements, desribe eah goal one by one.De�ne the grammar of the high-level language AWL, using Bakus Naur Form(BNF): Inhapter 2 of the report the grammar of AWL is desribed. This grammar is using the BNF notationform, and desribes the onstruts of the language.De�ne an operational big step semanti for AWL: In hapter 3 The big step semanti of AWLis shown. Here, the full desription of how the semantis works is given. An abstrat syntax that the1The requirements an also be found in hapter 1 90

CHAPTER 8. CONCLUSIONsemantis is based on has been de�ned. There is a thorough desription of eah syntati ategory fromthis abstrats syntax, and of the rules from eah of these ategories.De�ne the abstrat mahine AWLAM and have the AWL ompile to this: In hapter 4 theabstrat mahine(AWLAM) has been de�ned. We here de�ne the abstrat syntax that AWLAM adheresto, and give a desription of eah instrution found in the syntax.Prove that the translated ode is atually equivalent with the original AWL ode: In orderto prove the translated ode is equivalent with the original AWL ode, we have in hapter 5 desribedhow the various semantial rules from AWL translates to AWLAM. We then, in hapter 6, proeed byproving that the implementation is orret, by omparing the translated ode with the semantis de�nedin hapter 3. We here use di�erent forms of indution as a proof method.Our main goal in this projet was to de�ne the operational semantis of AWL, and then prove that atranslation of AWL ode into some target language would atually be orret. To do that it has beenneessary to de�ne a lot of other things as well, whih was not a part of the goal as suh, but whih enablesand helps us to reah the desired result. Before de�ning an operational semantis it was a neessity tohave a syntax whih was well de�ned, and atually showed the details of all onstruts. As suh it wouldhave been enough to just have an abstrat syntax, but that might have beome rather omplex sine thede�nition of the syntax also gave us insight into what the problem area was atually about.As suh an operational semantis serves as a lear and preise notation that shows how the languageatually behaves when being used. However there is no atual standard notation, whih makes it di�ultto desribe the semantis in a way that is easy to read for everyone. We have aimed at de�ning a notationthat both satis�es the need for a preise de�nition, but also a notation that should be somehow easy toread, ompared to the relative omplexity of the matter.In the de�nition of the abstrat mahine the main issue was to make a mahine that was simple andeasy to understand, but yet at a higher level than for example the Pentium platform is today. A lot ofissues arise when designing a piee of software at this level, and we have tried to make it as abstratas possible, without atually going high level. It would of ourse have been possible to use an existingabstrat mahine, but we felt that it would give us a better feeling with the mahine to atually developit ourselves, and also it enabled us to leave out aspets, whih are indeed important from a general pointof view, but whih were not entral to our projet.The de�nition of an operational semantis for the abstrat mahine was of ourse entral to the task ofproving the orretness of the translation proess, and we have partially proved the equivalene of thetwo operational semantis using indution, giving us a mathematial proof of the orretness.

91

Bibliography[1℄ Hans Hüttel. Pilen ved træets rod. Aalborg University, 2003.[2℄ Hanne Riis Nielson and Flemming Nielson. Semantis with Appliations. Wiley, revised internetedition edition, July 1999.[3℄ David A. Watt and Deryk F. Brown. Programming Language Proessors in Java: Compilers andInterpreters. Prentie Hall, 2000.

92

Indexabstrat mahine, 86abstrat syntax tree, 84, 86AWLAM, 86program example, 57BNF, 12, 14, 52ode generation, 60, 86ode store, 49ommands, 40omputation sequenelooping, 58terminating, 58ontextual analysis, 84data store, 49delarationsant type, 16, 38array, 17, 36memory, 14ommon, 38private, 40team, 39rule, 15, 37team, 17turn, 38variable, 17, 35derivation tree, 47EBNF, 84environment, 13proedure, 26variable, 26environment-store model, 23evaluation stak, 50, 86expressionsarithmeti, 17, 28boolean, 17, 31diretion, 33relational, 17funtions, 13grammar, 14identi�ation, 84implementation, 84, 86instrution set, 52

instrutions, 52interpretation, 87lexial analysis, 84literals, 18loation, 13memory, 87Myrekrig, 11notation, 13operational semantis, 28, 52AWLAM, 53parametersatual, 16, 44formal, 16, 44parser, 84partial funtions, 13preedene, 17program ounter, 50registers, 49, 86SableCC, 84sanner, 84semantisbig step, 21natural, 21operational, 21standard environment, 47syntati ategories, 21, 22onstruts, 23syntaxabstrat, 22onrete, 22token, 84transition systems, 21, 28translation funtions, 62type heking, 84variable bindingsdynami, 26stati, 26world onstrut, 4693

Appendix AProvable Corret implementationIn this appendix we have listed all the proofs of translation orretness.A.1 Variable DelarationsA.1.1 VariablesIn this setion we will prove that the translation of variable delarations is orret. We de�ne a lemmato express the orretness.Lemma A.1.1 For all variable delarations we have thatif hDV ; envV ; stoi ! (env0V ; sto0) then hr; CDV [[DV ℄℄ p; �; stoi .� hr0; �; �; sto0iwhere env0V (next) = r0(NEXT)So eah variable must be stored at the same storage loation in the two semantis. Also the pointer nextmust point to the same loation as the register NEXT after delaration.Proof: We will make the proof by indution on the shape of the derivation tree.The ase: [Dv-variable-delaration-empty℄We assume that h"; envV ; stoi !DV (envV ; sto). Using the translation funtion we get that CDV [[�℄℄ p =NOOP. Using the semantis of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiwhih ompletes the proof of this ase.The ase: [Dv-variable-delaration℄We assume that hvar x :type=exp;DV ; envV ; stoi ! (env0V ; sto0) holds beausehDV ; envV [x 7! (type; l)℄ [next 7! new (l)℄ ; sto [l 7! v ℄i !DV �env0V ; sto0�(whih is the premise)94

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.1. VARIABLE DECLARATIONSbeause l = envV (next).Using the ode translation funtion we get thatCDV [[var x : type=exp;DV ℄℄ p = CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ pWe an now make the following omputation sequene.hr;CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ p; �; stoi .�hr;SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ p; v; stoi .hr;NEXT : CDV [[DV ℄℄ p; �; sto00i .hr00;CDV [[DV ℄℄ p; �; sto00iWe see that sto00 = [l 7! v℄, so it follows that the variables are stored at the orret loations.Applying the indution hypothesis to the premise we get thathr00;CDV [[DV ℄℄ p; �; sto00i .� hr0; �; �; sto0iwhih ompletes the omputation whih ends in the required state. It follows from the omputationsequene that env0V (next) = r0(NEXT). This ompletes the proof of lemma A.1.1.A.1.2 ArraysThe following lemma expresses the orretness of array delarations.Lemma A.1.2 For all array delarations we have thatif hDA; envV ; stoi ! (env0V ; sto0) then hr; CDA [[DA℄℄ p; �; stoi . hr0; �; �; sto0iwhere r(NEXT) = envV (next)So eah array must be stored at the same storage loations in the two semantis. Also the pointer nextmust point to the same loation as the register NEXT after delaration.Proof: We will use indution on the shape of the derivation tree to prove lemma A.1.2.The ase: [Da-delaration-empty℄We assume that h�; envV ; stoi !DA (envV ; sto). Using the translation funtion we get that CDA [[�℄℄ p = NOOP,and with the semantis of NOOPwe have thathr ;NOOP; �; stoi . hr ; �; �; stoiwhih ompletes the proof of this ase.The ase: [Da-delaration℄We asume that 95

A.1. VARIABLE DECLARATIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONharray x [n℄ :type=exp;DA; envV ; stoi !DA �env0V ; sto0�beause hDA; envV [x 7! (type; l ; z)℄[next 7! new (l ; z))℄; sto[li 7! v ℄i !DA �env0V ; sto0�wherei 2 [0::z � 1℄ and l = envV (next) and z > 0.Using the ode translation funtion we get thatCDA [[array x [n℄ : type = exp DA℄℄ p =PUSH n3 : LABEL n1 : DUP : PUSH 0 : EQ : NEG : JUMPF n2 : CE [[exp℄℄ : SAVE 0 [NEXT ℄ :NEXT : PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ pWe an now make the following omputation sequene:�r ; PUSH n3 : LABEL n1 : DUP : PUSH 0 : EQ : NEG : JUMPF n2 : CE [[exp℄℄ : SAVE 0 [NEXT ℄: NEXT : PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; �; sto� .7�r 0; CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : PUSH 1 : SWAP :SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e; sto� .�
r 00; PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e; sto0� .�
r 000; JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e0; sto0� .�
r 0000; CDA [[DA℄℄ p ; �; sto00� .�hr 0; �; �; sto0iWe get the �rst part of the omputation using the semantis of AM, and we see that sto00 = sto[li 7! v℄where i 2 [0::N [[n℄℄ � 1℄ as required. We get the last part by applying the indution hypothesis to thepremise. This ompletes the proof of lemma A.1.2.A.1.3 Common MemoryThe following lemma expresses the orretness of ommon memory variable delarations.Lemma A.1.3 For all ommon memory variable delarations we have thatif hDMC ; envV ; stoi ! (env0V ; sto0) then hr; CDMC [[DMC ℄℄ p; �; stoi . hr0; �; �; sto0iwhere r0(NEXT) = env0V (next).So eah ommon variable must be stored at the same storage loation in the two semantis. Also thepointer next must point to the same loation as the register NEXT after delaration.Proof: We will use indution on the shape of the derivation tree to prove lemma A.1.3.The ase: [Dm-ommon-empty℄We assume that h"; envV ; stoi !DMC (envV ; sto). Using the translation funtion we get that CDMC [[�℄℄ p =NOOP.Using the semantis of NOOP we get that 96

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.1. VARIABLE DECLARATIONShr ;NOOP; �; stoi . hr ; �; �; stoiwhih ompletes the proof of this ase.The ase: [Dm-ommon℄We assume that hommon var x : type=exp;DMC ; envV ; stoi ! (env0V ; sto0) holds beausehDMC ; envV [x 7! (type; z)℄ [next 7! new(l)℄ ; sto[l 7! v ℄[COMMONDECLS 7! z + 1 ℄iUsing the ode translation funtion we get thatCDMC [[ommonvar x : type = exp;CDMC ℄℄ p =CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : LOAD 6 [SD℄ : PUSH 1 : ADD : SAVE 6 [SD℄ : CDMC [[DMC ℄℄We an now make the following omputation sequene.hr;CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : LOAD 6 [SD℄ : PUSH 1 : ADD : SAVE 6 [SD℄ : CDMC [[DMC ℄℄; �; stoi .�hr00;LOAD 6 [SD℄ : PUSH 1 : ADD : SAVE 6 [SD℄ : CDMC [[DMC ℄℄; �; sto000i .hr00; CDMC [[DMC ℄℄; �; sto00i .hr0; �; �; sto0iWe get the two �rst parts of the omputation by using the semantis of AM. We see that sto00 = sto[l 7! v℄as required. The last omputation is made by applying the indution hypothesis to the premise. It followsfrom the omputation sequene that r0(NEXT) = env0V (next) whih ompletes the proof.A.1.4 Teambrain MemoryThe following lemma expresses the orretness of teambrain memory variable delarations.Lemma A.1.4 For all teambrain memory variable delarations we have thatif hDMT ; envV ; stoi ! (env 0V ; sto0) then hr ; CDMT [[DMT ℄℄ p; �; stoi . hr0; �; �; sto0iSo that state of the storage must be idential after omputation in the two semantis.Proof: We will ondut the proof of lemma A.1.4 by indution on the shape of the derivation tree.The ase: [Dmt-team-empty℄We assume that h"; envV ; stoi !DMT (envV ; sto). Using the translation funtion we get that CDMT [[�℄℄ p = NOOP.Using the semantis of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiwhih ompletes the proof of this ase.The ase: [Dmt-team℄We assume that hteambrain var x : type ;DMT ; envV ; stoi ! (; env0V ; sto0) beause97

A.1. VARIABLE DECLARATIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONhDMT ; envV [x 7! (type; z)℄ ; sto[TEAMDECLS 7! z + 1 ℄i ! �env0V ; sto0�Using the ode translation funtion we get thatCDMT [[teambrain var x : type;CDMT ℄℄ p =LOAD 7 [SD℄ : PUSH 1 : ADD : SAVE 7 [SD℄ : CDMT [[CDMT ℄℄We an now make the following omputation sequene.hr;LOAD 7 [SD℄ : PUSH 1 : ADD : SAVE 7 [SD℄ : CDMT [[CDMT ℄℄; �; stoi .4hr00;CDMT [[CDMT ℄℄; �; sto00i .�hr0; �; �; sto0iWe get the �rst parts of the omputation by using the semantis of AM. We see that sto00 = sto[7 7! z+1℄as required (TEAMDECLS = 7). The last omputation is made by applying the indution hypothesisto the premise, whih ompletes the proof.A.1.5 Private MemoryThe following lemma expresses the orretness of private memory variable delarations.Lemma A.1.5 For all private memory variable delarations we have thatif hDMT ; envV ; stoi ! (env0V ; sto0) then hr; CDMT [[DMT ℄℄ p; �; stoi . hr0; �; �; sto0iSo that state of the storage must be idential after omputation in the two semantis.Proof: We will ondut the proof of lemma A.1.5 by indution on the shape of the derivation tree.The ase: [Dmt-private-empty℄We assume that h"; envV ; stoi !DMP (envV ; sto). Using the translation funtion we get that CDMP [[�℄℄ p =NOOP.Using the semantis of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiwhih ompletes the proof of this ase.The ase: [Dmt-private℄We assume that hprivate var x : type ;DMP ; envV ; stoi ! (; env0V ; sto0) beausehDMT ; envV [x 7! (z ; type)℄ ; sto[PRIVATEDECLS 7! z + 1 ℄i ! �env0V ; sto0�Using the ode translation funtion we get thatCDMP [[private var x : type;CDMP ℄℄ p =LOAD 8 [SD℄ : PUSH 1 : ADD : SAVE 8 [SD℄ : CDMP [[CDMP ℄℄ p98

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.2. PARAMETERSWe an now make the following omputation sequene.hr;LOAD 8 [SD℄ : PUSH 1 : ADD : SAVE 8 [SD℄ : CDMP [[CDMP ℄℄ p; �; stoi .4hr00;CDMP [[CDMP ℄℄; �; sto00i .�hr0; �; �; sto0iWe get the �rst parts of the omputation by using the semantis of AM. We see that sto00 = sto[8 7! z+1℄as required (PRIVATEDECLS = 8). The last omputation is made by applying the indution hypothesisto the premise, whih ompletes the proof.A.2 ParametersThe orretness of formal parameters is expressed by the following lemma.A.2.1 FormalLemma A.2.1 For all formal parameters we have thatif hPF ; envV i ! (env0V) then hr; CPF [[PF ℄℄ p; e; stoi . hr0; �; �; sto0iwhere the stak e ontains the atual parameter values, and where sto0 has the parameters stored at theloations following r(NEXT).Proof: To make this proof we will assume that there are the same amount of atual parameters as thereare formal parameters. We will prove lemma A.2.1 be indution on the shape of the derivation tree.The ase: [Pf-formal parameters-empty℄We assume that h"; envV i !PF (envV). Using the translation funtion we get that CPF [[�℄℄ p = NOOP.Using the semantis of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiSine there are no formal parameters then there are no atual parameters either. This ompletes theproof of this ase.The ase: [Pf-formal parameters℄We assume that hvar x : type;PF ; envV i !S env0V holds beausehPF ; envV [x 7! l℄ [next 7! new (l)℄i ! env0V .(whih is the premise)beause l = envV (next).Using the ode translation funtion we get thatCPF [[var x : type;PF ℄℄ p = SAVE 0 [NEXT ℄ : NEXT : CPF [[PF ℄℄99

A.2. PARAMETERS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONWe an now make the following omputation sequene.hr;SAVE 0 [NEXT ℄ : NEXT : CPF [[PF ℄℄; e; stoi .�hr00; CPV [[PF ℄℄ p; e0; sto00i .�hr0; �; �; sto0iWe see that sto00 = [l 7! v℄, and it follows from the omputation that the parameters are stored at theorret loations. The last omputation is made by applying the indution hypothesis to the premise.This ompletes the proof.A.2.2 AtualThe orretness of atual parameters is expressed by the following lemma.Lemma A.2.2 For all atual parameters we have thatif hPA; envV ; stoi ! (env0V ; sto0) then hr; CPA [[PF ℄℄ p; �; stoi . hr0; �; e; stoiwhere the stak e ontains the atual parameter values.Proof: We will prove lemma A.2.2 be indution on the shape of the derivation tree.The ase: [Pf-atual parameters-empty℄We assume that h"; envV ; stoi !PF (envV ; sto). Using the translation funtion we get that CPA [[�℄℄ p =NOOP. Using the semantis of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiSine there is no atual parameter then e = �. This ompletes the proof of this ase.The ase: [Pf-atual parameters℄We assume that hexp;PA; envV ; stoi !PA (env0V ; sto0) holds beausehPA; envV [next 7! new (l)℄ ; sto [l 7! v℄i ! �env0V ; sto0�beause l = envV (next).Using the ode translation funtion we get thatCPA [[ae;PA℄℄ p =CPA [[PA℄℄ : CA [[ae℄℄We an now make the following omputation sequene.hr;CPA [[PA℄℄ : CA [[ae℄℄; �; stoi .�hr00; CA [[ae℄℄; e0; stoi .�hr0; �; e; stoiThe �rst omputation is done by applying the indution hypothesis on the premise and by using that wean extend the ode base. It follows from the omputation that the atual parameters will be plaed onthe stak. 100

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.3. EXPRESSIONSA.3 ExpressionsA.3.1 ArithmetiThe orretness of the implementation of the arithmeti expressions in AWL is expressed by lemma A.3.1.Lemma A.3.1 For all arithmeti expressions ae we have thathr ; CA [[ae℄℄ ; �; stoi . hr; �; z; stoiwhere envP ; envV ; sto ` ae!ae z.Furthermore, all intermediate on�gurations of this omputation sequene will have a non-empty evalu-tation stak.Proof: The proof of lemma A.3.1 is done by strutual indution on ae.The ase: [ae-lit℄Using the ode generation funtion CA;we have that CA [[n℄℄ p = PUSH n. From the semantis of AMwe have that hr ;PUSH n; �; stoi . hr0; �; z; stoiand sine n! z in the operational semantis for AWL, we have ompleted the proof for [ae-lit℄.The ase: [ae-var℄We have that CA [[x ℄℄ p = LOAD n [LS ℄, where LS is the register, whih points to the loal base addressof the urrent routine p, and where n = mlo (p; x) (the relative address of x inside p).Using the semantis of AM we have thathr ;LOAD n [LS ℄; �; stoi . hr0; �; sto (r (LS) + z) ; stoiIn the operational semantis of AWL we have that x ! sto (envV (x)). Using the de�nition of LS andmlo we see that r(LS) + z = envV (x), whih ompletes the proof of this ase.The ase: [ae-array℄We have that CA [[x [ae℄℄℄ p = CA [[ae℄℄ : PUSH n : ADD : LOADS [LS ℄where LS is the register, whih points to the loal base adress of the urrent routine p, and wheren = mlo(p; x) is the relative adress of the �rst element of the array variable x inside p.We an make the omputation sequenehr ; CA [[ae℄℄ : PUSH n : ADD : LOADS [LS ℄ ; �; stoi .� hr0; �; sto (r (LS) + z1 + z2) ; stoi101

A.3. EXPRESSIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONwhere z1 = N [[n℄℄ and ae!ae z2The semantis of AWL states that x[ae℄ !ae sto (envV (x) + z2). Using the de�nition of LS and mlowe see that r(LS) + z = envV (x), whih ompletes the proof of this ase.The ase: [ae-ommon memory variable℄Using the translation funtion we have thatCA [[mem x ℄℄ = LOAD n [CM ℄where CM is the register pointing to the �rst ommon memory loation and n = mlo (memory; x),where n is the relative address of x in the memory sope. When applying the semantis of AM we gethr ;LOAD n [CM ℄ ; �; stoi . hr 0; �; sto (r (CM) + z) ; stoiIn the operational semantis of AWL we have that (memx) !ae z1 where envV (x) = (integer; z1). andz1 = (COMMONBASE + z1).Using the de�nition of CM and mlo we see that r(CM)+z = z1, whih ompletes the proof of this ase.The ase: [ae-teambrain memory variable℄We have that CA [[tmem x℄℄ p = LOAD n [CTM ℄ where CTM is the register pointing to �rst teambrainmemory loation for the urrent team and n = mlo (memory; x), where n is the relative address of x inthe memory variable sope. Using the translation funtion we get thathr ;LOAD n [CTM ℄ ; �; stoi . hr 0; �; sto (r (CTM) + z) ; stoiSine tmem x!ae z1 where envV (x) = (integer; z2) andz1 = sto (teamLo (sto (CURRENTTEAM)) +TEAMALLOC + z2)we need to show thatr (CTM) + z = teamLo (sto (CURRENTTEAM)) +TEAMALLOC + z2The de�nition of teamLo spei�es that it will return the base storage loation of a given team. Usingthat, the de�nition of CTM and z = z2, we an see that the above statement holds.The ase: [ae-private memory variable℄We have that CA [[pmem x ; ℄℄ p = LOAD n [CAM ℄where CAM is the register pointing to �rst private memory loation for the urrent ant on the urrentteam and n = mlo (memory; x), where n is the relative address of x in the memory variable sope. Wethen have hr ;LOAD n [CAM ℄ ; �; stoi . hr 0; �; sto (r (CAM) + z) ; stoi102

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.3. EXPRESSIONSSine pmem x!ae z1 where envV (x) = (integer; z2) andz1 = sto (antLo (sto (CURRENTTEAM) ; sto (CURRENTANT)) + ANTALLOC + z2)we need to show thatr (CAM) + z = antLo (sto (CURRENTTEAM) ; sto (CURRENTANT)) + ANTALLOC + z2The de�nition of antLo spei�es that it will return the base storage loation of a given team and ant.Using that, the de�nition of CAM and z = z2, we an see that the above statement holds.The ase: [ae-random℄Using the ode translation funtion we get thatCA [[random(ae)℄℄ p = CA [[ae℄℄ : RANThis results in the omputation sequenehr; CA [[ae℄℄ : RAN; �; stoi . hr0;RAN; z1; stoi . hr; �; z2; stoiwhere 0 � z2 < z1The �rst omputation is made by applying the indution hypothesis to ae and the seond by using thesemantis of RAN. It follows from the rule [ae-random℄ that this ompletes the proof.The ase: [ae-getProperty℄Using the ode translation funtion we haveCA [[getProperty(ae);℄℄ = CA [[ae℄℄ : LOADS [SD℄and we there have the omputation sequenehr ; CA [[ae℄℄ : LOADS [SD℄ ; �; stoi .�hr 0;LOADS [SD℄ ; z1 ; stoi .hr 00; �; z2 ; stoiTo make the �rst omputation we apply the indution hypothesis to ae, and to make the seond we usethe semantis of LOADS. We see that z2 = sto(z1), and using the rule [ae-getProperty℄ we see that thisis the required result.The ase: [ae-par℄We have that CA [[(ae)℄℄ = CA [[ae℄℄.Applying the indution hypothesis to ae we get thathr;CA [[ae℄℄ ; �; stoi .� hr0; �; z; stoi103

A.3. EXPRESSIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONSine (ae)!ae z the proof is omplete.The ase: [ae-add℄We have that CA [[ae1 + ae2 ℄℄ = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : ADDApplying the indution hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSine we an extend the ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : ADD; �; stoi .� hr; CA [[ae1 ℄℄ : ADD; z2; stoi .�hr;ADD; z1 : z2; stoiWe now apply the transition rule for ADD, and gethr;ADD; z1 : z2; stoi .� hr; �; (z1 + z2); stoiSine ae1 + ae2 !ae (z1 + z2) in the semantis of AWL, the proof is omplete.The ase: [ae-sub℄We have that CA [[ae1 � ae2 ℄℄ = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : SUBApplying the indution hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSine we an extend the ode base, we have thathr; CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : SUB; �; stoi .� hr; CA [[ae1 ℄℄ : SUB; z2; stoi .�hr;SUB; z1 : z2; stoiWe now apply the transition rule for SUB, and gethr;SUB; z1 : z2; stoi .� hr; �; (z1 � z2); stoiSine ae1 � ae2 !ae (z1 � z2) in the semantis of AWL, the proof is omplete.The ase: [ae-mult℄We have that 104

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.3. EXPRESSIONSCA [[ae1 � ae2 ℄℄ = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ :MULTApplying the indution hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSine we an extend the ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ :MULT; �; stoi .� hr;CA [[ae1 ℄℄ :MULT; z2; stoi .�hr;MULT; z1 : z2; stoiWe now apply the transition rule for MULT, and gethr;MULT; z1 : z2; stoi .� hr; �; (z1 � z2); stoiSine ae1 � ae2 !ae (z1 � z2) in the semantis of AWL, the proof is omplete.The ase: [ae-div℄We have that CA [[ae1 =ae2 ℄℄ = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : DIVApplying the indution hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSine we an extend the ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : DIV; �; stoi .� hr;CA [[ae1 ℄℄ : DIV; z2; stoi .�hr;DIV; z1 : z2; stoiWe now apply the transition rule for DIV, and gethr;DIV; z1 : z2; stoi .� hr; �; (z1=z2); stoiSine ae1 � ae2 !ae (z1=z2) in the semantis of AWL, the proof is omplete.The ase: [ae-ruleall℄We have that CA [[r (PA)℄℄ = CPA [[PA℄℄ : CALL n1 ;n2 : LOAD 0 [NEXT ℄This gives us the omputation sequene 105

A.3. EXPRESSIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONhr; CPA [[PA℄℄ : CALL n1 ;n2 : LOAD 0 [NEXT ℄; �; stoi .�hr;CALL n1 ;n2 : LOAD 0 [NEXT ℄; e; sto0i .�hr;LOAD 0 [NEXT ℄; �; sto0i .hr; �; z; sto0iWe get the �rst omputation by using lemma A.2.2. The seond omputation is made by using thesemantis of CALL and the proedure protools de�ned in the last hapter, whih states (among otherthings) that after returning from a proedure, the atual parameters have been removed from the stak.The protools also states that the return value is stored at loation 0 relative to the address stored inNEXT , and using LOAD we therefore get the �nal omputation. We see that the storage has hangedwhih goes against the lemma - however sine we haven't updated NEXT the updated storage loationwill be overwritten, making the hange irrelevant. This onludes the proof of lemma A.3.1.A.3.2 BooleanThe orretness of the implementation of the boolean expressions in AWL is expressed by the followinglemma.Lemma A.3.2 For all boolean expressions be we have thathr; CB [[be℄℄ ; �; stoi . hr; �; b; stoiwhere envV ; sto ` be!be bFurthermore, all intermediate on�gurations of this omputation sequene will have a non-empty evalu-tation stak.Proof: The proof of the lemma is done by strutual indution on be.The ase: [be-lit℄Using the ode generation funtion we have that CB [[bl℄℄ = fTRUE;FALSEg.From the semantis of AWLAM we have thathr; CB [[bl℄℄ ; �; stoi . hr; �; b; stoiand sine bl! b in the operational semantis for AWL, we have ompleted the proof for [be-lit℄.The ase: [be-var℄We have that CB [[x ℄℄ p = LOAD n [LS ℄, meaning that this proof is analog to that of [ae-var℄.The ase: [be-array℄We have that CB [[x [ae℄℄℄ p = CB [[ae℄℄ : PUSH n : ADD : LOADS [LS ℄, meaning that this proof is ana-log to that of [ae-array℄.The ase: [be-ommon memory variable℄ 106

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.3. EXPRESSIONSWe have that CB [[mem x ℄℄ = LOAD n [CM ℄, meaning that this proof is analog to that of [be-ommonmemory variable℄.The ase: [be-teambrain memory variable℄We have that CB [[tmem x ℄℄ p = LOAD n [CTM ℄, meaning that this proof is analog to that of [be-teambrain memory variable℄.The ase: [be-private memory variable℄We have that CB [[pmem x ; ℄℄ p = LOAD n [CAM ℄, meaning that this proof is analog to that of [ae-private memory variable℄.The ase: [be-getProperty℄Using the ode translation funtion we have CB [[getProperty(ae);℄℄ = CB [[ae℄℄ : LOADS [SD ℄, meaningthat this proof is analog to that of [ae-getProperty℄.The ase: [be-par℄We have that CB [[(ae)℄℄ = CB [[ae℄℄, meaning that this proof is analog to that of [ae-getProperty℄.The ase: [be-equals(ae)℄We have that CB [[ae1 == ae2 ℄℄ p = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : EQApplying the indution hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSine we an extend the ode base, we have thathr; CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : EQ; �; stoi .� hr;CA [[ae1 ℄℄ : EQ; z2; stoi .�hr;EQ; z1 : z2; stoiWe now apply the transition rule for EQ, and gethr;EQ; z1 : z2; stoi .� hr; �; (z1 = z2); stoiSine ae1 � ae2 !ae (z1 = z2) in the semantis of AWL, the proof is omplete.The ase: [be-equals(be)℄We have that CB [[be1 == be2 ℄℄ p = CB [[ae2 ℄℄ : CB [[ae1 ℄℄ : EQ, meaning that this proof is analog to that of[be-equals(ae)℄.The ase: [be-equals(de)℄ 107

A.3. EXPRESSIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONWe have that CB [[de1 == de2 ℄℄ p = CB [[de2 ℄℄ : CB [[de1 ℄℄ : EQ, meaning that this proof is analog to thatof [be-equals(ae)℄.The ase: [be-not-equals(ae)℄We have that CB [[ae1 ! = ae2 ℄℄ p = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : EQ : NEGApplying the indution hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSine we an extend the ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : EQ : NEG; �; stoi .� hr; CA [[ae1 ℄℄ : EQ : NEG; z2; stoi .� hr;EQ : NEG; z1 : z2; stoiWe now apply the transition rules for EQ and NEG, and gethr;EQ; z1 : z2; stoi .� hr;NEG; (z1 = z2); stoi .� hr; �; (z1 6= z2); stoiwhih ompletes the proof.The ase: [be-not-equals(be)℄We have that CB [[be1 ! = be2 ℄℄ p = CA [[be2 ℄℄ : CA [[be1 ℄℄ : EQ : NEG, meaning that this proof is analog tothat of [be-not-equals(ae)℄.The ase: [be-not-equals(be)℄We have that CB [[de1 ! = de2 ℄℄ p = CA [[de2 ℄℄ : CA [[de1 ℄℄ : EQ : NEG, meaning that this proof is analog tothat of [be-not-equals(ae)℄.The ase: [be-greater-than℄We have that CB [[ae1>ae2 ℄℄ p = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : LE : NEGApplying the indution hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSine we an extend the ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : LE : NEG; �; stoi .� hr;CA [[ae1 ℄℄ : LE : NEG; z2; stoi .� hr;LE : NEG; z1 : z2; stoiWe now apply the transition rules for LE and NEG, and get108

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDShr;LE; z1 : z2; stoi .� hr;NEG; (z1 > z2); stoi .� hr; �; (z1 � z2); stoiwhih ompletes the proof.The proofs of the onstruts [be-lower-than℄, [be-greater-than-or-equals℄ is analogous.The ase: [be-and℄We have that CB [[be1and be2 ℄℄ p = CB [[be2 ℄℄ : CB [[be1 ℄℄ : ANDApplying the indution hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSine we an extend the ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : AND; �; stoi .� hr;CA [[ae1 ℄℄ : AND; z2; stoi .� hr;AND; z1 : z2; stoiWe now apply the transition rules for AND we gethr;AND; z1 : z2; stoi .� hr;AND; (z1 ^ z2); stoiwhih ompletes the proof.The proof of [be-or℄ is analogous.A.3.3 DiretionAll proofs of diretion expressions are analogous to the proofs of arithmeti expressions.A.4 CommandsThe following theorem expresses, that if a exeution of S terminates in a state in the semantis of AWL,then it will also terminate in the semantis of the abstrat mahine AM with the resulting states beingequal. This also applies the other way around. The theorem also expresses that if the exeution of Sfrom one state loops in one of the semantis then it will also loop in the other.Theorem A.4.1 For every statement S of AWL we have that SAWL [[S℄℄ = SAM [[S℄℄The theorem is proved in two stages expressed by lemma A.4.2 and lemma A.4.3.Lemma A.4.2 For every statement S of AWL and stores sto and sto0, we have thatif hS; stoi ! sto0 then hr; CS [[S℄℄ ; �; stoi .� hr0; �; �; sto0i109

A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONIf the exeution of S from the store sto terminates in the big step semantis for AWL, then the exeutionof the translated ode from the store sto will also terminate in the semantis for AWLAM and the resultingstores will be equal.Proof: The proof of lemma A.4.2 is ompleted by indution on the shape of the derivation tree forhS; stoi ! sto0. So we will prove the lemma for eah ommand in AWL.The ase: [s - assign℄We asume that hx = exp; stoi ! sto0 where sto0 = sto[l 7! v℄ , l = envV (x) and exp! v.Using CS we get that CS [[x = exp℄℄ p = CE [[exp℄℄ : SAVE n [LS ℄where n = mlo(p; x). From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti rules of AM we gethr0;SAVE n [LS℄; v; stoi . hr00; �; �; sto [(r(LS) + z℄) 7! viSine we have that envV (x) = r(LS) + z this ompletes the proof.The ase: [S assign array℄We assume that hx[ae℄ =exp;; stoi ! sto0where sto0 = sto [(l + z1) 7! v℄ , ae! z1 and envV (x) = (type; l; z2) and 0 � z1 < z2We have that CS [[x [ae℄ = exp; ℄℄ p = CE [[exp℄℄ : CA [[ae℄℄ : PUSH n : ADD : SAVES [LS ℄From CE and CA we gethr;CE [[exp℄℄ : CA [[ae℄℄ ; �; stoi .� hr00; CA [[ae℄℄ ; v ; stoi .� hr000; �; z1 : v; stoiApplying PUSH we get hr000;PUSH n; z1 : v; stoi . hr0000; �; z3 : z1 : v; stoiwhere z3 = mlo (p; x). We now apply ADDhr0000;ADD; z3 : z1 : v; stoi . hr00000; �; z4 : v; stoiFinally applying SAVES [LS ℄ we get 110

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDShr00000;SAVES [LS℄ ; z4 : v; stoi . hr0; �; �; sto0iSine l = z3, z1in the semantis of AWL equals z1 in the semantis of AM, the proof is omplete.The ase: [s - omp℄Using the semantis of AWL we have that hS1S2; stoi ! sto0 beause hS1; stoi ! sto00 and hS2; sto00i !sto0. Using CS we get that CS [[S1S2 ℄℄ = CS [[S1 ℄℄ : CS [[S2 ℄℄We apply the indution hypothesis to the premises and get that
r; CS [[S1 ℄℄ ; �; sto� .� hr00; �; �; sto00iand
r00; CS [[S2 ℄℄ ; �; sto� .� hr0; �; �; sto0iSine we an extend the ode omponent we get that
r; CS [[S1℄℄ : CS [[S2 ℄℄ ; �; sto� .�
r00; CS [[S2℄℄ ; �; sto00� .� hr0; �; �; sto0iwhih ompletes the proof.The ase: [S-if-true℄We assume that hif(be)fS1gelsefS2g; stoi !S sto0 beause be!be b , B [[b℄℄ = tt and hS1; stoi !S sto0.From the implementation we getCS [[if (be)fS1 gelsefS2 g℄℄ =CB [[be℄℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2For boolean expressions we have that
r; CB [[be℄℄ ; � ; sto� .
r0; � ; b; sto�Applying this we get
r; CB [[be℄℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; � ; sto� .�hr0;JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; b; stoiUsing the rule for JUMPF n and assuming that b = tt we have thathr0;JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; b; stoi .hr00;CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; stoiUsing the rule for CS [[S1℄℄ we gethr00;CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; stoi .�hr000;JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; sto0iApplying the rule for JUMP n we get 111

A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONhr000;JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; sto0i .hr0; �; �; sto0iSine hS1; stoi !S sto0 the proof is omplete.The ase: [S-if-false℄This proof is analog to [S-if-true℄.The ase: [S-while-true℄We asume that hwhile(be)fSg; stoi ! sto00 beause be!be tt , hS; stoi ! sto00 and hwhile(be)fSg; sto00i !sto0.From our ode translation funtions we have thatCS [[while(be)fSg℄℄ =LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2The omputation sequene of the translated ode results inDr1; LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S℄℄ : JUMP n1 : LABEL n2 ; �; stoE.Dr2; CB [[be℄℄ : JUMPF n2 : CS [[S℄℄ : JUMP n1 : LABEL n2 ; �; stoE.�Dr3; JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; tt; stoE.Dr4; CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoE.Dr5; CS [[S ℄℄ : LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoEWe get the last omputation by using the semantis of JUMP. We now apply the indution hypothesis onthe premises of the AWL semantis for [while-true℄. So hS; stoi ! sto00 and hwhile(be)fSg; sto00i ! sto0results inhr5; CS [[S ℄℄; �; stoi .� hr6; �; �; sto00i andhr6;LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; sto00i . hr7; �; �; sto0iSine we an extend the ode omponent we get that
r5; CS [[S ℄℄ : LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; sto�.�
r6; LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; sto00�.�hr7; �; �; sto0iThis ompletes the proof for [S-while-true℄.The ase: [S-while-false℄This proof is analog to the proof of [S-while-true℄The ase: [S-ruleall℄We assume hr(PA);; stoi !S sto4 beause 112

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDS
PF ; env0V [next 7! new (l)℄�! env00V
PA; env00V [next 7! new (l)℄ ; sto�! �env3V ; sto0�
DV ; env3V ; sto0�!DV �env4V ; sto00�
DA; env4V ; sto00�!DA �env5V ; sto3�
S; sto3�!S sto4where l = envV (next) and envP (r) = (S; PF ; env0V ; DV ; DA). From our ode translation funtion wehave that CS [[r (PA)℄℄ = CPA [[PA℄℄ : CALL plo(r); parameter ountUsing the semantis of CALL and the de�ned protools we an rewrite our omputation sequene toCPA [[PA℄℄ : CALL plo(r); parameter ount. =CPA [[PA℄℄ : CPF [[PF ℄℄ : CDV [[DV ℄℄ : CDA [[DA℄℄ : CS [[S ℄℄ : RETURNWe an now make the omputation sequenehr ; CPA [[PA℄℄ : CPF [[PF ℄℄ : CDV [[DV ℄℄ : CDA [[DA℄℄ : CS [[S ℄℄ : RETURN; �; stoi.
r 0;CS [[S ℄℄ ; �; sto3 �
r00; �; �; sto4�We make the �rst omputation using the other proofs in this hapter. To make the last omputation weapply the indution hypothesis to the premise
S; sto3�!S sto4, whih ompletes the proof.The proof of [S-endturn℄ and [S-proess℄ is analogous.The ase: [S - ommon memory assign℄We assume that hmem x=exp;; stoi ! sto0 where sto0 = sto[l 7! v℄ , l = envV (x) and exp! v.Using CS we get that CS [[mem x = exp℄℄ = CE [[exp℄℄ : SAVE n [CM ℄where n = mlo(memory; x). From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti rules of SAVE we gethr0;SAVE n [CM ℄; v ; stoi . hr00; �; �; sto [(r(CM) + z℄) 7! viUsing the de�nition of CM we see that envV (x) = r(CM) + z.The ase: [S - team memory assign℄We assume that htmem x=exp;; stoi ! sto0 where sto0 = sto[l 7! v℄ , l = envV (x) and exp! v.Using CS we get that 113

A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONCS [[tmem x = exp℄℄ = CE [[exp℄℄ : SAVE n [CTM ℄where n = mlo(memory; x). From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti rules of AWLAM we gethr0;SAVE n [CTM ℄; v ; stoi . hr00; �; �; sto [(r(CTM) + z) 7! v℄iUsing the de�nition of CTM we see that envV (x) = r(CTM) + z.The ase: [S - private memory assign℄We assume that hpmem x=exp;; stoi ! sto0 where sto0 = sto[l 7! v℄ , l = envV (x) and exp! v.Using CS we get that CS [[pmem x = exp℄℄ = CE [[exp℄℄ : SAVE n [CAM ℄where n = mlo(memory; x). From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti rules of AWLAM we gethr;0 SAVE n [CAM ℄; v ; stoi . hr00; �; �; sto [(r(CAM) + z) 7! v℄iUsing the de�nition of CAM we see that envV (x) = r(CAM) + z.The ase: [S-return℄We assume that hreturn exp; ; stoi ! sto0 where sto0 = sto[l 7! v℄, l = envV (return) and exp! v.Using CS we get that CS [[return exp; ℄℄ = CE [[exp℄℄ : SAVE 0 [LS ℄From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti rules of AWLAM we gethr0;SAVE 0 [LS ℄; v; stoi . hr00; �; �; sto [r(LS) 7! v℄iUsing the de�nition of LS and the de�ned protools, we see that envV (return) = r(LS).The ase: [S-skip℄We assume that hskip;; stoi ! sto. Using CS we get that114

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDSCS [[skip℄℄ p = NOOPFrom the rule for NOOP we have that hr;NOOP; �; stoi . hr0; �; �; stoi , whih ompletes the proof.The ase: [S-setProperty℄We assume that hsetProperty(ae; exp);; stoi ! sto0 where sto0 = sto[l 7! v℄, exp ! v1, ae ! z1 andz1 = l.We have that CS [[setProperty(ae; exp);℄℄ = CE [[exp℄℄ : CA [[ae℄℄ : SAVES [SD℄Applying CE and CA we gethr; CE [[exp℄℄ : CA [[ae℄℄; �; stoi .� hr00;CA [[ae℄℄; v2; stoi .� hr000; �; z2 : v2; stoiUsing the semantis of SAV ES we gethr000;SAVES [SD℄ ; z2 : v2; stoi . hr0; �; �; sto0iSine l = z1 = z2 and v1 = v2 the proof is omplete.This onludes the proof of lemma A.4.2.Lemma A.4.3 For every ommand S of AWL and stores sto and sto0, we have thatif hr; CS [[S℄℄ ; �; stoi .k hr0; �; e; sto0i then hS; stoi ! sto0So if the exeution of the ode for S from a storage s terminates, then the AWL semantis of S from swill terminate in a state being equal to the storage of the terminal on�guration.Proof: We will prove lemma A.4.3 by indution on the length k of the omputation sequene on AM. Ifk = 0 then the result holds beause CS[[S ℄℄ = � is impossible. So we assume that it holds for k � k0 andwill prove that it holds for k = k0 + 1. We make a ase study on the ommand S.The ase: x = exp;We have that CS [[x = exp; ℄℄ = CE [[exp℄℄ : SAVE n [LS ℄ , so we assume thathr; CE [[exp℄℄ : SAV E n [LS℄; �; stoi .k0+1 hr0; �; e; sto0iSine we an split the instrution sequene into two we have thathr;CE [[exp℄℄ ; �; stoi .k1 hr00; �; e00; sto00iandhr; SAV E n [LS℄; e00; sto00i .k2 hr0; �; e; sto0i115

A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONwhere k1 + k2 = k0 +1. From the expression lemmas we get that sto00 = sto and e00 = v where exp! v .Using the semantis of SAVE we see that sto0 = sto[(r(LS) + z) 7! v℄. It follows from [s - assign℄ thathx = exp;; stoi ! sto0, whih ompletes the proof.The ase: x [ae℄ = exp;We have that CS [[x [ae℄ = exp; ℄℄p = CE [[exp℄℄ : CA [[ae℄℄ : PUSH n : ADD : SAVES [LS ℄We an then make the omputation sequenehr;CE [[exp℄℄ : CA [[ae℄℄ : PUSH n : ADD : SAVES [LS ℄; �; stoi .k0+1 hr0; �; e; sto0iSine we an split the ode omponent up we gethr;CE [[exp℄℄; �; stoi .k1
r5; �; e4; sto5�
r5; CA [[ae℄℄; e4; sto5� .k2
r4; �; e3; sto4�
r4;PUSH n; e3; sto4� .k3
r3; �; e2; sto3�
r3;ADD; e2; sto3� .k4
r2; �; e1; sto2�
r2;SAVES [LS℄ ; e1; sto2� .k5 hr0; �; e; sto0iwhere k1 + k2 + k3 + k4 + k5 = k0 + 1Sine CE [[exp℄℄, CA [[ae℄℄, PUSH and ADD do not hange the storage, we have that sto = sto5 = sto4 =sto3 = sto2. We also have that e4 = v, e3 = z1 : v, e3 = z2 : z1 : v , e1 = z3 : v and e = �.Sine we have that sto0 = sto[(l + z1) 7! v℄ where envV (x) = (type; l; z3) and 0 � z1 < z3 this ompletesthe proof.The ase: S1S2We have that CS [[S1S2 ℄℄ = CS [[S1 ℄℄ : CS [[S2 ℄℄, so we assume thathr; CS [[S1 ℄℄ : CS [[S2 ℄℄; �; stoi .k0+1 hr0; �; e; sto0iSine we an split the instrution sequene into two we have thathr;CS [[S1 ℄℄; �; stoi .k1 hr0; �; e0; sto0i andhr00;CS [[S2 ℄℄; e0; sto00i .k2 hr0; �; e; sto0iwhere k1 + k2 = k0 + 1 , e0 = � and e = �.We an now apply the indution hypothesis to hr; CS [[S1 ℄℄; �; stoi .k1 hr0; �; e0; sto0i beause k1 � k0hS1; stoi !S sto00Beause we have hr00; CS [[S2 ℄℄; e0; sto00i .k2 hr0; �; e; sto0i and k2 � k0 we an now apply the indutionhypothesis one more time and get. 116

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDShS2; sto00i !S sto0This gives us hS1S2; stoi !S sto0 as required. The proof is now omplete.The ase: if(be)fS1gelsefS2g trueWe have that CS [[if (b)fS1 gelsefS2 g℄℄ =CB [be℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2We assume thathr;CB [be℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; stoi .k0+1 hr0; �; e; sto0iSine we an split up the ode omponent we gethr; CB [[be℄℄; �; stoi .k1 hr0000; �; e000; sto0000ihr0000;JUMPF n1; e000; sto0000i .k2 hr000; �; e00; sto000ihr000;CS [[S1 ℄℄; e00; sto000i .k3 hr00; �; e0; sto00ihr00;JUMP n2; e0; sto00i .k4 hr0; �; e; sto0iwhere k1 + k2 + k3 + k4 = k0 + 1 and k2; k4 = 1.Sine CB [[be℄℄ and JUMPF does not hange the storage, we have that sto0000 = sto000 and sto00 = sto0.Likewise CS [[S1 ℄℄ and JUMP does not hange the evaluation stak so we have that e00 = e0 = e = �. Weassume that e000 = tt .Sine k3 � k0 we an apply the indution hypothesis to this omputation and then we have thathS1; stoi ! sto0The rule [S-if-true℄ gives the required hif(be)fS1gelsefS2g; stoi ! sto0. The proof of if(be)fS1gelsefS2gfalseis analogous.The ase: while(be)fSg trueThe ode for the while loop isCS[[while(be)fSg℄℄= LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2and we therefore assume thathr;LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoi .k0+1 hr0; �; �; sto0iUsing the de�nition of JUMP we an rewrite the omputation sequene in the following maner:117

A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONhr;LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoi .hr00;CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoi .hr000;JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; tt; stoi .hr0000;CS [[S ℄℄ : LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoi .k0�2hr0; �; �; sto0iWe an now split up our ode omponent, and we gethr0000;CS [[S℄℄ ; �; stoi .k1 hr00000; �; �; sto00i and (1)hr00000;LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; sto00i .k2 hr0; �; �; sto0i (2)where k1 + k2 = k0 � 2. Sine k1 � k0 we an apply the indution hypothesis to the omputationsequene (1). We therefore get that hS; stoi ! sto0. And sine k2 � k0we an also apply the indutionhypothesis to the omputation sequene (2) and we get that hwhile(be)fSg; sto00i ! sto0. Using the rule[S-while-true℄ we get hwhile(be)fSg; stoi ! sto0 as required.The proof of the ase while(be)fSg false is analogous.The ase: skip;We have that CS [[skip;℄℄ =NOOP. That gives us the on�gurationhr;NOOP; �; stoi . hr0; �; e; sto0iSine e = � and sto0 = sto and hskip;; stoi !S sto the proof is omplete.The ase: setProperty(ae; exp);We have that CS [setProperty(ae; exp)℄ = CE [[exp℄℄ : CA [[ae℄℄ : SAVES [SD℄This give us the on�gurationhr;CE [[exp℄℄ : CA [[ae℄℄ : SAVES [SD℄; �; stoi .k0+1
r1; �; �; sto1�We an split this into hr;CE [[exp℄℄; �; stoi .k1
r2; �; e1; sto2�
r2; CA [[ae℄℄; e1; sto2� .k2
r3; �; e2; sto3�
r3;SAVES [SD℄ ; e2; sto3� .k3 Dr0 ; �; e; sto0EWe have that k0 + 1 = k1 + k2 + k3, e0 = v1; e2 = z1 : v1 and e = �.From [S-getProperty℄ we have that ae ! z2 = l and exp ! v2 . Beause z1 = z2 and v1 = v2 thisompletes the proof.The ase: mem x = exp;We have that 118

APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDSCS [[mem x=exp;℄℄ = CE [[exp℄℄ : SAVE n [CM ℄so we assume that hr;CE [[exp℄℄ : SAVE n [CM ℄; �; stoi .k0+1 hr0; �; e; sto0iSine we an split the instrution sequene into two we havehr;CE [[exp℄℄; �; stoi .k1 hr00; �; e00; sto00i andhr;SAVE n [CM ℄; e00; sto00i .k2 hr0; �; e; sto0iwhere k1 + k2 = k0 + 1. From the expression lemmas we get that sto00 = sto and e00 = v where exp! v. Using the semantis of SAVE we see that sto0 = sto[(r(CM) + z) 7! v℄. It follows from [S-ommonmemory assign℄ and the de�nition of CM that hmem x=exp;; stoi ! sto0, whih ompletes the proof.The proofs of tmem and pmem are analogous.The ase: return exp;We have that CS [[return exp;℄℄ = CE [[exp℄℄ : SAVE 0 [LS ℄so we assume that hr;CE [[exp℄℄ : SAVE 0 [LS ℄; �; stoi .k0+1 hr0; �; e; sto0iSine we an split the instrution sequene into two we havehr;CE [[exp℄℄; �; stoi .k1 hr00; �; e00; sto00i andhr;SAVE 0 [LS ℄; e00; sto00i .k2 hr0; �; e; sto0iwhere k1 + k2 = k0 + 1. From the expression lemmas we get that sto00 = sto and e00 = v where exp! v. Using the semantis of SAVE we see that sto0 = sto[r(LS) 7! v℄. It follows from [S-return℄ and thede�nition of LS that hreturn exp;; stoi ! sto0, whih ompletes the proof.The ase: r (PA) ;We have that CS[[r (PA) ; ℄℄ = CPA [[PA℄℄ : CALL n1 ;n2where n1 = plo(r) and n2 = parameter ount, so we assume thathr; CPA [[PA℄℄ : CALL n1 ;n2 ; �; stoi .k0+1 hr0; �; e; sto0iWe an split up the ode omponent, so there must be a on�guration on the form hr00; �; e00; sto00i suhthat 119

A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONhr;CPA [[PA℄℄; �; stoi .k1 hr00; �; e00; sto00i andhr00;CALL n1 ;n2 ; e00; sto00i .k2 hr0; �; e; sto0iwhere k1 + k2 = k0 + 1. Using lemma A.2.2 we see that e00 ontains the atual parameters, if there areany. Using the semantis of CALL we an rewrite the last omputation.hr00;CPF [[PF ℄℄ : CDV [[DV ℄℄ : CDA [[DA℄℄ : CS [[S ℄℄ : RETURN; e00; sto00i .k2hr0; �; e; sto0iThis sequene an also be split up, so there must be a on�guration on the form hr000; �; e000; sto000i, suhthat hr00;CPF [[PF ℄℄; e00; sto00i .k3 hr000; �; e000; sto000i andhr000;CDV [[DV ℄℄ : CDA [[DA℄℄ : CS [[S ℄℄ : RETURN; e000; sto000i .k4 hr0; �; e; sto0iwhere k3 + k4 = k2. Using lemma A.2.1 we see that e000 = � and that sto000 = sto00. Again we an split upthe ode omponent, so there must be a on�guration on the form
r4; �; e4; sto4� suh thathr000;CDV [[DV ℄℄; e000; sto000i .k5
r4; �; e4; sto4� and
r4;CDA [[DA℄℄ : CS [[S ℄℄ : RETURN; e4; sto4� .k6 hr0; �; e; sto0iwhere k5 + k6 = k3. Using lemma A.1.5 we see that e4 = e000 = �. Again we an split up the odeomponent, so there must be a on�guration on the form
r5; �; e5; sto5� suh that
r4; CDA [[DA℄℄; e4; sto4� .k7
r5; �; e5; sto5� and
r5; CS [[S ℄℄ : RETURN; e5; sto5� .k8 hr0; �; e; sto0iwhere k7 + k8 = k6. Using lemma A.1.2 we see that e5 = e4 = �. One again we split up the odeomponent, so there must be a on�guration on the form
r6; �; e6; sto6� suh that
r5;CS [[S ℄℄ :; e5; sto5� .k9
r6; �; e6; sto6� and
r6;RETURN; e6; sto6� .k10 hr0; �; e; sto0iwhere k9 + k10 = k8. We an now apply the indution hypothesis to S, whih gives
S; sto5�! sto6 and e6 = �Using the rule [S-ruleall℄ we get that hr(PA);; stoi !S sto0, whih ompletes the proof.

120

Appendix BSableCC Generated FileThe following is the �le that SableCC uses to generate our sanner and parser along with the tree, andthe inluded tree walkers.Pakage awl.ompiler.parser;Helpersletter = (['a'..'z'℄ | ['A'..'Z'℄);digit = ['0'..'9'℄;true = 'true'; false = 'false';left = 'left'; right = 'right';up = 'up'; down = 'down';ht = 0x0009; lf = 0x000a;ff = 0x000; r = 0x000d; sp = ' ';Tokenst_world = 'world';t_main = 'main';t_rule = 'rule';t_turn = 'turn';t_anttype= 'anttype';t_endturn = 'endturn';t_proess = 'proess';t_getproperty = 'getProperty';t_setproperty = 'setProperty';t_reateteam = 'reateTeam';t_reateant = 'reateAnt';t_random = 'random';t_return = 'return';t_skip = 'skip';t_if = 'if';t_else = 'else';t_while = 'while';t_ommon = 'ommon';t_private = 'private';t_teambrain = 'teambrain';t_mem = 'mem';t_pmem = 'pmem';t_tmem = 'tmem';t_var = 'var';t_array = 'array'; 121

APPENDIX B. SABLECC GENERATED FILEt_eof = 'eof';t_or = 'or';t_and = 'and';t_integer= 'integer';t_boolean = 'boolean';t_diretion = 'diretion';t_integer_literal = digit*;t_boolean_literal = (true | false);t_diretion_literal = (left | right | up | down);t_identifier = letter (letter | digit)*;t_lpar = '(';t_rpar = ')';t_lbrae = '{';t_rbrae = '}';t_lbraket = '[';t_rbraket = '℄';t_semiolon = ';';t_olon = ':';t_omma = ',';t_dot = '.';t_assign = '=';t_bang = '!';t_gt = '>';t_lt = '<';t_eq = '==';t_ne = '!=';t_le = '<=';t_ge = '>=';t_plus = '+';t_minus = '-';t_star = '*';t_slash = '/';t_newline = r | lf | r lf;t_whitespae = (sp | ht | ff)*;t_omment = '#' (digit | letter | ' ')*;Ignored Tokenst_newline, t_whitespae, t_omment;Produtions/* Program */program = world;main = t_main t_lbrae team_delaration*variable_init* array_init* ommands t_rbrae;world = t_world t_lpar [size℄:t_integer_literal[omma1℄:t_omma [ants℄:t_integer_literal[omma2℄:t_omma [foods℄:t_integer_literal t_rpar t_lbraeommon_del* teambrain_del* private_del*ntb_delaration* tb_delaration* ant_type_delaration*maint_rbrae;/* Commands*/ommands = ommand*;ommand ={assign} t_identifier t_assign expression t_semiolon |{ruleall} t_identifier t_lpar atual_parm_listt_rpar t_semiolon | 122

APPENDIX B. SABLECC GENERATED FILE{arrayassign} t_identifier t_lbraket[index℄:expressiont_rbraket t_assign [value℄:expression t_semiolon |{if} t_if t_lpar [ondition℄:expression t_rpar[lbrae1℄:t_lbrae [om℄:ommands [rbrae1℄:t_rbraet_else [lbrae2℄:t_lbrae[else_om℄:ommands [rbrae2℄:t_rbrae |{while} t_while t_lpar expressiont_rpar t_lbrae ommands t_rbrae |{endturn} t_endturn t_identifiert_lpar atual_parm_list t_rpar t_semiolon |{return} t_return expression t_semiolon |{skip} t_skip t_semiolon |{mem} t_mem t_identifiert_assign expression t_semiolon |{tmem} t_tmem t_identifiert_assign expression t_semiolon |{pmem} t_pmem t_identifier t_assign expressiont_semiolon |{proess} t_proess t_lpar [team℄:expression[omma1℄:t_omma [ant℄:expression [omma2℄:t_ommat_identifier t_rpar t_semiolon |{setproperty} t_setproperty t_lpar[index℄:expression t_omma [value℄:expressiont_rpar t_semiolon |{reateant} t_reateant t_lparexpression t_rpar t_semiolon;/* Memory */ommon_del = t_ommon variable_init;teambrain_del = t_teambrainvariable_delaration t_semiolon;private_del = t_privatevariable_delaration t_semiolon;/* Delarations*/ntb_delaration ={noreturn} ntb_delaration_noreturn |{return} ntb_delaration_return;ntb_delaration_noreturn = t_rule t_identifiert_lpar formal_parm_list t_rpar t_lbraevariable_init* array_init* ommands t_rbrae;ntb_delaration_return = t_rule t_identifiert_lpar formal_parm_list t_rpar t_olonsimple_type t_lbrae variable_init*array_init* ommands t_rbrae;tb_delaration = t_turn t_identifier t_lparformal_parm_list t_rpar t_lbrae variable_init*array_init* ommands t_rbrae;return_type = t_olon simple_type;formal_parm = variable_delaration t_semiolon;formal_parm_list = formal_parm*;atual_parm = expression t_semiolon;atual_parm_list = atual_parm*;ant_type_delaration = t_anttype t_identifiert_lbrae variable_init* array_init* ommands t_rbrae;team_delaration = t_reateteam t_lpart_identifier t_rpar t_semiolon; 123

APPENDIX B. SABLECC GENERATED FILE/* Variable Delarations*/variable_init = variable_delarationt_assign expression t_semiolon;array_init = array_delaration t_assign expressiont_semiolon;variable_delaration = t_var t_identifiert_olon simple_type;array_delaration = t_array t_identifiert_lbraket t_integer_literal t_rbraket t_olon simple_type;simple_type ={integer} t_integer |{boolean} t_boolean |{diretion} t_diretion;/* Expressions*/primary_expression ={par} t_lpar expression t_rpar |{onstant} literal |{identifier} t_identifier |{array} t_identifier t_lbraket expression t_rbraket |{funtion} t_identifier t_lpar atual_parm_list t_rpar |{mem_identifier} t_mem t_identifier |{tmem_identifier} t_tmem t_identifier |{pmem_identifier} t_pmem t_identifier |{getproperty} t_getproperty t_lpar expression t_rpar |{random} t_random t_lpar expression t_rpar;expression = or_expression;or_expression ={or} and_expression t_or or_expression |{bubble} and_expression;and_expression ={and} eq_expression t_and and_expression |{bubble} eq_expression;eq_expression ={equals} rel_expression t_eq eq_expression |{notequals} rel_expression t_ne eq_expression |{bubble} rel_expression;rel_expression ={greater} add_expression t_gt rel_expression |{lower} add_expression t_lt rel_expression |{greaterequals} add_expression t_ge rel_expression |{lowerequals} add_expression t_le rel_expression |{bubble} add_expression;add_expression ={plus} mult_expression t_plus add_expression |{minus} mult_expression t_minus add_expression |{bubble} mult_expression;mult_expression ={mult} unary_expression t_star mult_expression |{div} unary_expression t_slash mult_expression |{bubble} unary_expression;unary_expression ={minus} t_minus primary_expression |{bang} t_bang primary_expression |{bubble} primary_expression;/* Literal*/ 124

APPENDIX B. SABLECC GENERATED FILEliteral ={boolean} t_boolean_literal |{integer} t_integer_literal |{diretion} t_diretion_literal;

125

