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Ant War LanguageWritten byTim Boesen,Dennis Kjærulff Pedersen,Thomas Pryds Lauritsen,Jakob Rutkowski Olesen,Carl Christian Sloth AndersenOn the semesterDAT2 for the 
ourseSS, Syntax & Semanti
sDuring the period ofFebruary 3rd to May 30th, 2003
SynopsisIn this report we develop the programming language AWL (Ant War Language).We de�ne the syntax for the language and use it as a basis for the de�nition of the operational semanti
s.Next we de�ne the abstra
t ma
hine AWLAM and the operational semanti
s for its instru
tions.The report then pro
eeds to prove the 
orre
tness of AWL by using indu
tion in the length of transitionsand indu
tion on the shape of the derivation tree.
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Chapter 1Introdu
tionIn this 
hapter we will start out by giving a full des
ription of the problem area. We will on basis of thisdes
ription, write the problem statement, in whi
h we outline the problems in key senten
es. Followingthis, we will des
ribe how we will solve the problems, and give an example o� what the produ
t of thisrapport 
ould be used for. We will summarize this with a few key senten
es, whi
h we 
onsider to be thegoal of the proje
t. We will �nish this 
hapter o� by des
ribing the layout of the report, and des
ribingsome of the notation used throughout the report.1.1 Problem AreaThere is a Danish programming game 
alled Myrekrig (Ant war)1. The 
on
ept is that people programan ant algorithm (From now on just 
alled an ant) in a programming language (originally C), adhering toa set of prede�ned rules. To determine the best algorithm, two or more ants will be run in a simulationengine, to determine whi
h algorithm is the best.As su
h C is just �ne for the task, but there are several issues whi
h justify designing a spe
ial pur-pose language for the simulations. First of all, C has a lot of fun
tionality, whi
h is not neededin designing an ant. This 
an be quite overwhelming for the unexperien
ed programmer. Further-more it would be ni
e to have a higher level of abstra
tion, than C provides. For example, it wouldbe more intuitive to read and write 
ommands like walk(LEFT ) for moving an ant to the left, orif (examine(RIGHT )) = FOOD then MoveAnt(RIGHT ) for moving an ant to the right if it sees food.Designing a new language enables the designer to in
lude only the important language 
onstru
tions, andit is also possible to design a syntax whi
h supports the underlying 
on
ept of the game.The problem in key senten
es is:� At present time there is no spe
i�
 language for 
reating a game of antwar� Existing programming languages are often very 
omplex, and does not provide 
onstru
ts spe
i�
allyfor what will be required when 
reating a game of ant war.1.2 Solution to the ProblemThe solution to the problem is to 
reate a spe
ial purpose programming language spe
i�
ally for AntWar. We will 
all this language AWL (Ant War Language).Here we will give a des
ription of how a game of ant wars 
ould look like using AWL, we will highlight
ertain terms, that will be used throughout the report, the �rst time they appear.1The home-site for myrekrig is: http://www.myrekrig.dk/11



1.3. OUTLINE OF THE PROJECT CHAPTER 1. INTRODUCTIONWe de�ne a world 
onsisting of a 2D-board of n�n �elds/squares, in whi
h teams 
an exist. Ea
h teamwill 
onsist of a number of ants. The team owners will de�ne algorithms for their teams of ants and on
ethe game is started, time will show who has the best algorithm. On their own hands, the ants will ventureout into the world, gather food, and bring it ba
k to their respe
tive bases and in ex
hange get anotherant. The size of the world, the maximum number of ants and the number of food pie
es that exist in asingle exe
ution of the program is de�ned by the programmer. In the world the programmer 
an de�nesome 
ommonmemorywhi
h all teams 
an a

ess and modify if they so 
hoose. Furthermore ea
h teamwill have some team memory whi
h all ants on the team 
an a

ess but whi
h ants of other teams 
annota

ess. Finally ea
h ant has a pr/home/tim/uni/awl
vs/awl/do
s/awl_main.psivate memorywhi
h other ants 
annot a

ess. It is now up to the programmer to de�ne the world as he sees �t, this
ould in
lude making sure that if an ant wanders out over the side of the de�ned board it will �magi
ally�re-appear on the other side of the board. The programmer also de�nes how the game should end, ifindeed he wants it to end and not run �forever�.Below we will, in key senten
es, des
ribe what the programming language must provide:� AWL has to 
ontain high level language 
onstru
ts, su
h as in C.� AWL has to provide spe
i�
 
onstru
ts for the programmer, so that rules su
h as walk(LEFT )areeasy to 
reate.� AWL has to provide a 
onstru
t to allow the programmer to move the fo
us from one ant and teamto another ant and team� AWL has to provide some �ant memory� whi
h di�er in s
ope.� AWL has to provide a 
onstru
t for 
reating teams.� AWL has to 
ompile to an abstra
t ma
hine, whi
h we will 
all AWLAM(AWL Abstra
t Ma
hine).The goal of this proje
t will then be to:� De�ne the grammar of the high level language AWL, using Ba
kus Naur Form(BNF)� De�ne an operational big step semanti
 for AWL2� De�ne the abstra
t ma
hine AWLAM and have the AWL 
ompile to this.� Prove that the translated 
ode is a
tually equivalent with the original AWL 
ode.1.3 Outline of the proje
tThe proje
t is divided into eight 
hapters, ea
h 
overing their own topi
 of the proje
t. This 
hapter isan introdu
tion to the proje
t. Chapter 2 is dealing with the syntax of our programming language, 
alledAWL. We will des
ribe the grammar of AWL, by the BNF notation, and will go into detail with whatea
h single synta
ti
 element does. Further on we will give an explanation of why the syntax is designedthe way it is.Chapter 3 deals with the operational semanti
 of AWL. We will des
ribe the semanti
 details of AWL,and of 
ourse des
ribe it in detail. Chapter 4 gives the de�nition of the abstra
t ma
hine AWLAM, andgive an operational semanti
 for this ma
hine as well. The abstra
t ma
hine's instru
tion set will be ourtarget language, and in 
hapter 5 we will give the details on how the translation is a
tually done. Toprove that the translation of AWL to AWLAM ma
hine 
ode is 
orre
t we will, in 
hapter 6, give proofof 
orre
tness for the translation. Finally we will des
ribe the a
tual implementation of the AWLAMinterpreter in 
hapter 7. In ea
h of the 
hapters 1 through 7 there will be a summary whi
h will serve asa sub 
on
lusion for the 
hapter. Chapter 8 will 
ontain the overall 
on
lusion for the proje
t.2Operational big step semanti
s are also know as �natural semanti
s�.12



CHAPTER 1. INTRODUCTION 1.4. NOTATIONBesides that, the proje
t 
ontains an appendix with some of the proofs from 
hapter 6, and an appendixshowing some of the details on the AWL to AWLAM 
ompiler. There will also be a list on the literatureused in the proje
t.1.4 NotationIn this report we will assume that the reader is familiar with basi
 set theory, though, we do use notationsnot normally 
onsidered part of basi
 set theory. Generally we use the notation of [1℄ as this has beenthe literature of our studies. In this se
tion, the notation used throughout this report is brie�y explainedand examples are shown. However, at some points we might use a notation not dis
ussed here. Thisis primarily the 
ase when a notation is only used in a small part of the report. In these 
ases we willshortly address the notation in the beginning of the 
hapter or se
tion in whi
h it is used.1.4.1 Total and partial fun
tion spa
eGiven the sets A and B, the notation A! B des
ribes the set of fun
tions from A to B. Any element inthat set is therefore a fun
tion that takes something from the set A and returns something from the setB. Su
h a fun
tion f is written as f : A! B (or as f 2 A! B). Therefore, Env = Var ! Lo
 des
ribesthat the set Env 
onsists of elements, where ea
h element is a fun
tion from Var to Lo
.Referring toenvironments and lo
ations as in the example above, it would, however, be more 
orre
t written asEnv = Var ,! Lo
. Var ,! Lo
 indi
ates that there is not ne
essarily an element of Lo
 de�ned for everyelement of Var . We 
all the elements of Var ,! Lo
 partial fun
tions3.1.4.2 ValuesThroughout the report we will be using the following notation regarding values of 
ertain types.z 2 Z (Numbers)b 2 Bool (Booleans)d 2 Dir (Dire
tions)v 2 Z[Bool[Dir (Union of numbers, booleans and dire
tions)1.4.3 StatesA state s is a (partial) fun
tion, des
ribed as in se
tion 1.4.1. Also it might be represented as [a 7! 4; b 7! 3; 
 7! 2℄whi
h means the state where the variable a maps to 4, b maps to 3, and 
 maps to 2 (or a = 4, b = 3,and 
 = 2). Often we use this notation for showing 
hanges in a state. Consider the state s above. If wewant to refer to a new state s0 that is equal to s, ex
ept that b = 5, we will des
ribe s0 as s [b 7! 5℄ (sex
ept that b maps to 5).1.5 SummaryIn this 
hapter we have des
ribed the problem that this proje
t aims to solve. Furthermore we have listedsome demands that AWL must adhere to, and some general demands for the proje
t. Following this wehave des
ribed the outline of the report and des
ribed some notations used trough-out the report.3Another notation for this is V ar * Lo
, but we will not use it in this report.13



Chapter 2SyntaxIn this 
hapter we de�ne the grammar for AWL expressed in BNF notation (Ba
kus Naur Form). Thegrammar should make it easy for the programmer to understand the 
on
epts of AWL, and it should
larify distin
tions between 
onstru
ts whi
h are semanti
ally di�erent.The grammar has been divided into intuitive sub-
ategories to ease the reading and understanding, ea
hwith its own heading. It should however, be seen as a whole grammar. On the right side of ea
h rulethere is a 
ombination of letter(s) and number(s) in parentheses. This is only meant as an easy referen
eto the individual rules, and are not part of the grammar itself.2.1 WorldThese rules des
ribe the general program 
onstru
tion. (P1) shows that an AWL program 
onsists of aworld. (P2) tells us that the world is 
onstru
ted by three integer literal parameters and by de�ning thememory, whi
h will be a

essible for the ants. Also a world 
ontains de
larations of rules and ant typesand �nally a main se
tion. The three integer literals are used in the initialization of the world and tellsus the size of the world, the maximum number of ants there 
an be on ea
h team and the maximumamount of food in the world. (P3) des
ribes the 
onstru
tion of main, whi
h 
onsists of de
larations and
ommands. Program ::= World (P1)World ::= world(IntLiteral ; Intliteral ; IntLiteral) (P2)fMemory NTBRuleDe
ls TBRuleDe
ls AntTypeDe
ls MaingMain ::= mainfTeamDe
ls VarInits ArrayInits Commandsg (P3)The basi
 idea is that a program should be divided into some logi
al parts. First of all we want toseparate the ants from the world, so that they 
an not a

ess everything. This has been enfor
ed throughthe memory and rule 
on
epts. The only data available to the ant (besides itself) is the ant memory, andthe only methods available to the ant are the ones de
lared as rules.2.2 MemoryThere are three di�erent s
opes when de
laring memory for the ants. A pie
e of memory 
an be eitherprivate for ea
h ant, private for the team or 
ommon to all ants on all teams. They have to be de
lared ina spe
i�
 order as seen in (M1). Common memory is initialized when de
lared, so that the programmer
an give ants a

ess to some 
ommon attributes like worldsize. Team and private memory are only14



CHAPTER 2. SYNTAX 2.3. RULESde
lared, and it is up to the ants what they put in those variables. The memory de�ned is also persistent,this means that it will be saved from turn to turn1.Memory ::= CommonDe
ls Teambrainde
ls PrivateDe
ls (M1)CommonDe
ls ::= 
ommonVarInit CommonDe
ls j � (M2)TeambrainDe
ls ::= teambrainVarDe
l TeambrainDe
ls j � (M3)PrivateDe
ls ::= privateVarDe
l PrivateDe
ls j � (M4)This 
onstru
tion has been in
luded to be able to 
ontrol whi
h data is available to the ant and whi
his not. It should be possible for the world 
onstru
tor to de�ne how mu
h memory ea
h team shouldhave a

ess to. There will be a basis for di�eren
e in the behavior of the ants if they have a

ess to anunlimited number of integers as opposed to only one integer.2.3 RulesThe 
ategory Rules des
ribes the syntax for adding fun
tionality whi
h the ant types 
an use. A rule 
anbe one of two di�erent types: NTBRule (R1) or TBRule (R4). TB means �turn-based�, and NTB means�non turn-based�. The di�eren
e between the two types is that a TB rule 
an only be 
alled on
e everyturn for ea
h ant, while the NTB 
an be 
alled several times (e.g. an ant 
an only walk on
e every turn,but may do several 
al
ulations on some number). Also the NTB rule may have a return type, whi
h isa SimpleType. Both rule types 
an take parameters, and have their 
ode embra
ed in 
urly bra
kets.NTBRuleDe
ls ::= NTBRuleDe
l NTBRuleDe
ls j � (R1)NTBRuleDe
l ::= rule Identi�er(FormalParmList) ReturnType fCommands g (R2)ReturnType ::= : SimpleType (R3)TBRuleDe
ls ::= TBRuleDe
l TBRuleDe
ls j � (R4)TBRuleDe
l ::= turn Identi�er(FormalParmList) fCommands g (R5)The reason for the Rule part is very similar to the memory. The world 
onstru
tor must have some wayto 
ontrol that the ants do not a

ess fun
tions, whi
h they should not have any knowledge about. Againit is up to the world 
onstru
tor to de�ne what should be a

essible. It has been ne
essary to divide therules into two 
ategories. Some fun
tions 
ould be 
alled several times, and some should only be 
alledon
e. As an example it makes sense that it is only possible to 
all the walk 
ommand on
e for ea
h turn.But of 
ourse it is possible for the world implementor to spe
ify otherwise.2.4 CommandsThis part of the grammar des
ribes the basi
 
ommands in AWL. (C1) shows that 
ommands are either asingle Command, or a Command followed by several other Commands. The �rst 
ommand is the assign
ommand (C2), whi
h is used to assign some value to an existing variable. The mem 
ommands (C3) areused for assigning values to the memory variables of the ants. There is one 
ommand for ea
h memorytype, whi
h is 
ommon, team and private. These 
ommands are used in the ant types to a

ess antmemory variables. The (C4) 
ommand is for assigning a value to an array. The lo
ation in the array isspe
i�ed by the expression inside the square bra
kets. (C5) is a 
all to a de
lared rule with a parameterlist. Rules (C6) and (C7) are general 
onstru
ts for sele
tion and iteration: the if-else sele
tion, and thewhile loop.Calling a TBRule and 
alling a NTBRule is semanti
ally di�erent (sin
e a TBRule will end a turn, anda NTBRule will not). Be
ause of this, it should not be possible to 
onfuse a 
all to a TBRule 
all with a1This is a di�eren
e from memory de
lared by the team programmer inside the ant spe
i�
ation in that the latter is notpersistent. 15



2.5. PARAMETERS CHAPTER 2. SYNTAX
all to a NTBRule (or the other way around) in the syntax of AWL. Therefore a 
all to a TBRule musthave the pre�x endturn. The return 
ommand is used to return a value from a rule. Skip does nothingbut to skip, whi
h means: nothing.The 
ommand pro
ess will pro
ess one spe
i�
 ant from one spe
i�
 team using a given ant type. A 
all topro
ess will normally return when a TBRule is 
alled with endturn. setProperty takes two expressions,storage lo
ation and assign value). The 
ommand manipulates dire
tly with memory, whi
h means thatthe programmer potentially has a

ess to everything.Commands ::= Command Commands j � (C1)Command ::= Identi�er = Expr ; (C2)j 
mem Identi�er = Expr ; j tmem Identi�er = Expr ; (C3)j pmem Identi�er = Expr ;j Identi�er [Expr ℄ = Expr ; (C4)j Identi�er (A
tParmList) ; (C5)j if(Expr)fCommandsgelsefCommandsg (C6)j while(Expr)fCommandsg (C7)j endturn Identi�er (A
tParmList) ; (C8)j return Expr ; (C9)j skip ; (C10)j pro
ess(Expr ;Expr ;Identi�er) ; (C11)j setProperty(Expr ;Expr) ; (C12)Most of these 
onstru
ts are quite similar to those of other existing languages, while some of the 
onstru
tsare unique to AWL. Se
tion xxx in 
hapter xxx des
ribes how the setProperty 
ommand 
an be usefulwhen implementing a standard environment.2.5 ParametersThis 
ategory des
ribes the way parameters should be de
lared and used in rules. One part is thede
laration of the formal parameters (PF2), whi
h spe
i�es the type of parameter required in a fun
tion,and the other is the a
tual parameters (PA4), whi
h are the parameters a
tually used as input to a rule,when it is exe
uted. All a
tual parameters are expressions, and expressions are explained a few 
ategoriesbelow. FormalParmList ::= FormalParm FormalParmList j � (PF1)FormalParm ::= VarDe
l ; (PF2)A
tParmList ::= A
tParm A
tParmList j � (PA3)A
tParm ::= Expr ; (PA4)The reason we need these 
onstru
t is to enable that rules 
an have arguments as input.2.6 Ant Type De
larationsThe AntType 
ategory des
ribes the syntax for 
reating an AntType, i.e. a �ra
e�. The de
laration ofan ant 
an be a single de
laration or may 
onsist of several de
larations one after another. Ea
h antde
laration must 
onsist of the keyword anttype followed by an identi�er, whi
h is the name of the type.Inside 
urly bra
kets the 
ommands of the de
lared anttype will be used.AntTypeDe
ls ::= AntTypeDe
l AntTypeDe
ls j � (AT1)AntTypeDe
l ::= anttype IdentifierfCommandsg (AT2)16



CHAPTER 2. SYNTAX 2.7. TEAM DECLARATIONSWith the separation of the world and the anttypes it is possible to 
hange ants without a
tually 
hangingmu
h in the world. Ea
h anttype is de�ned as a sort of pro
edure. Though it is quite di�erent from therules, and it makes it possible to easily see the di�eren
e of an ant and a rule, and thereby it helps us toseparate the ants from the rules.2.7 Team De
larationsA team de
laration (T2) de�nes how a team is initialized. The 
reateTeam keyword is followed by anidenti�er signifying the anttype, in
losed in bra
kets. A team de
laration 
an be single de
laration orseveral de
larations (T1). TeamDe
ls ::= TeamDe
l TeamDe
ls j � (T1)TeamDe
l ::= 
reateTeam(Identi�er) ; (T2)Ea
h team is as said, of a 
ertain anttype, and ea
h team also have a

ess to some memory, whi
h is
ommon memory and team memory.2.8 Variable De
larationsThe 
ategory variable de
larations 
overs variable initialization, variable de
larations, array initializationsand array de
larations. Variable initializations (V1) 
an be a single initialization or several initializations.An initialization (V2) 
onsists of a de
laration and an assignment. Ea
h variable de
laration (V3) mustme pre�xed with the keyword var and have a name and a simpletype (V7). The Array initialization andde
laration is done mu
h the same way, ex
ept that the keyword array is used.VarInits ::= VarInit VarInits j � (V1)VarInit ::= VarDe
l = Expr ; (V2)VarDe
l ::= var Identi�er : SimpleType (V3)ArrayInits ::= ArrayInit ArrayInits j � (V4)ArrayInit ::= ArrayDe
=Expr ; (V5)ArrayDe
 ::= array Identi�er : SimpleType (V6)SimpleType ::= integer j boolean j dire
tion (V7)These are standard de
larations whi
h is found in many programming languages su
h as C and Java.2.9 ExpressionsThese rules show how expressions are made. A primary expression 
an be an expression in parentheses,a literal, a referen
e to an array element, a rule 
all or a referen
e to a ant memory variable (E1). It 
analso be one of the 
onstru
ts getProperty or random. An expression 
an be an arithmeti
, a relationalor a boolean expression. Sin
e the operators have di�erent pre
eden
e, they have been organized so thatarithmeti
 expressions will be evaluated �rst, then relational expressions and �nally boolean expression.17



2.10. VARIOUS CHAPTER 2. SYNTAXPrimaryExpr ::= (Expr) j Literal (E1)j Identi�er [Expr ℄ j Identi�er (A
tParmList)j 
mem Identi�er j tmem Identi�er j pmem Identi�erj getProperty(Expr)j random(Expr)Expr ::= OrExpr (E2)OrExpr ::= OrExpr orAndExpr jAndExpr (E3)AndExpr ::= AndExpr and EqualExpr j EqualExpr (E4)EqualExpr ::= EqualExpr EqualOperator RelationalExpr j RelationalExpr (E5)EqualOperator ::= = j ! = (E6)RelationalExpr ::= RelationalExpr RelationalOperator AddExpr jAddExpr (E7)RelationalOperator ::= < j> j<= j>= (E8)AddExpr ::= AddExpr AddOperator MultExpr jMultExpr (E9)AddOperator ::= + j � (E10)MultExpr ::= MultExpr MultOperator UnaryExpr jUnaryExpr (E11)MultOperator ::= � j = (E12)UnaryExpr ::= UnaryOperator PrimaryExpression j PrimaryExpression (E13)UnaryOperator ::= � j ! (E14)In general the expression part is quite similar to other languages. The only thing that 
ould be di�erentis the pre
eden
e rules. We have 
hosen to use standard evaluation for arithmeti
 operators, and thesame for boolean.The reason for this is that most people are already familiar with these pre
eden
e rules.The random expression is introdu
ed to AWL, sin
e the programmer will need a way to make his antstake di�erent 
hoi
es. Otherwise all ants dedi
ated to a given ant type would follow the exa
t samepattern. getProperty is the 
ounterpart to the 
ommand setProperty. It gives dire
t a

ess to fet
hvalues from any storage lo
ation, and 
an be very useful when implementing a standard environment.2.10 VariousThese rules des
ribe the general types in AWL. An integer literal 
onsist of an amount of digits. Anidenti�er always begins with a letter and may be followed by an arbitrary number of letters and digits.A letter is an element in the English alphabet, and a number is a sequen
e of digits, whi
h might be a�oating point number. The Dire
tion literal is in
luded to be be able to spe
ify a dire
tion.Literal ::= BoolLiteral j IntLiteral jDire
tionLiteral (V1)BoolLiteral ::= true j false (V2)IntLiteral ::= Digit IntLiteral j � (V3)Dire
tionLiteral ::= left j right j up j down j 
enter (V4)Identi�er ::= Letter j Identi�er Letter j Identi�er IntLiteral (V5)Letter ::= ajbj
jdjejf jgjhjijjjkjljmjnjojpjqjrjsjtjujvjwjxjyjz (V6)j AjBjCjDjEjFjGjHjIjJjKjLjMjNjOjPjQjRjSjTjUjVjWjXjYjZDigit ::= 0j1j2j3j4j5j6j7j8j9 (V7)We have de
ided to in
lude some of the most 
ommon types. Besides that we have in
luded a Dire
tionliteral, whi
h will be useful, and more intuitive to use when you for example want to spe
ify, the dire
tionof an ant, rather than using numbers.Table 2.1 on the fa
ing page show how a program 
an be build from the syntax just de�ned. The left
olumn shows the 
ode, while the right 
olumn 
ontains some 
omments on what is happening.2.11 SummaryIn this 
hapter we have de�ned the grammar for AWL. We have tried to de�ne a syntax, whi
h is simplerthan that of other existing high level languages. On the other hand, we also wanted to use some 
onstru
ts18



CHAPTER 2. SYNTAX 2.11. SUMMARY

world{500,200,100){ World 
reationA new world is 
reated with the size 500x500. Ea
h team will havea maximum of 200 ants, and there will be a maximum of100 pie
es of food in the world at any given time.
ommon var 
x : integer = 0; Ant memory is de
laredteambrain var tx : integer = 0; Common variables are stored one pla
e in memory. Teambrainprivate var px : integer = 0; variables are stored on
e for every 
reated team, and private variablesare stored on
e for ea
h ant.rule myRule(var d : integer){ The rule myRule is de
laredvar x : integer = 0; The rule name is asso
iated with the formal parameters,r = r + d; the de
larations and the 
ommands. The 
urrent variable environment} is also stored with the rule (stati
 variable binding).anttype myAntType{ The ant type myAntType is de
laredvar y : integer = 0; The type name is asso
iated with the de
larations and the 
ommands.r(left); The 
urrent variable environment is also stored with the ant type.}main{ The main se
tion of the program.
reateTeam(team1); A new team is 
reated.
reateAnt(team1); A ant is 
reated for team1.pro
ess(team1, 0, myAntType); Ant 0 on team1 is pro
essed using the ant type myAntType}} End of the worldTable 2.1: Example AWL program

19



2.11. SUMMARY CHAPTER 2. SYNTAXof general purpose languages, sin
e users will be familiar with those. The purpose of the syntax is also tosupport the 
on
eptual ideas in the problem area of this report - namely de�ning an ant world. ClearlyAWL have no usage besides de�ning a world of ants.The primary in�uen
es from modern high level languages, su
h as C and Java, are the basi
 variable typesand the sele
tion and loop 
onstru
ts. We have left out several data types, like �oating point numbers,to keep the programming language relatively simple.We have aimed at 
onstru
ting a language with some level of en
apsulation. Ea
h ant and team willexplore the world on its own, so they are de�ned with their own s
ope of variables. Ea
h ant will onlyhave a

ess to de
lared rules, whi
h are de�ned by the programmer of the a
tual world. This has thee�e
t of en
apsulating the ants. Sin
e it is not ne
essary to have su
h en
apsulation in other parts of theprogramming language, we have de
ided to use this solution rather than a more general 
onstru
t.As the pro
ess has evolved we have realized that even simple additions to the language syntax 
an havea huge impa
t on the 
omplexity of the language. Espe
ially in the operational semanti
s, whi
h is thesubje
t of the next 
hapter.

20



Chapter 3Operational Semanti
s for AWLIn this 
hapter we will de�ne the operational semanti
s for AWL.De�ning the operational semanti
s for any programming language 
onsists of the following steps:� De�ning an abstra
t syntax with synta
ti
 
ategories and 
onstru
ts.� De�ning semanti
al sets and fun
tions.� De�ning transition systems.Operational semanti
s tells us how to exe
ute our program, and thus how it should be understood.When all this is done we will des
ribe how AWL 
an be extended to in
lude a standard environment.3.1 Big Step Semanti
sThe semanti
s de�ned in this 
hapter is big step (or natural) semanti
s. This means that a whole
al
ulation is done in one transition.We will de�ne the 
on�gurations for a transition system in the following manner (example):�De
Var = (De
Var � EnvV � Store) [ EnvV � Storewhi
h means that a 
on�guration in the 
ategory De
Var 
onsists of one or more de
larations, a variableenvironment with updated variable bindings and a store with updated storage bindings.We will use the following notation to de�ne our transitions:PremisesCon
lusionwhereConditionsAn example of this 
ould be the transition for multiplying two arithmeti
 expressions:envV ; sto ` ae1 !ae z1 envV ; sto ` ae2 !ae z2envV ; sto ` ae1 �ae2 !ae zwhere z = z1 � z2The above transition should be read like �ae1 multiplied with ae2 will give the result z, if ae1 evaluatesto z1 and ae2 evaluates to z2, with the 
ondition that z1 � z2 equals z�.21



3.2. ABSTRACT SYNTAX CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL3.2 Abstra
t SyntaxThe semanti
s of a programming language is based on the syntax of the language. Sin
e we don't needto 
he
k a program for synta
ti
al errors at this point, we don't need the entire 
on
rete syntax from theprevious 
hapter. Instead we will de�ne an abstra
t syntax, whose purpose is to des
ribe the stru
tureof the di�erent synta
ti
al 
onstru
ts. Later we 
an de�ne semanti
 rules for ea
h synta
ti
al 
onstru
t,and group them by their 
ategories.3.2.1 Synta
ti
 CategoriesFor ea
h 
ategory we spe
ify a meta variable. In the 
ategory V ar the meta variable is x, whi
h meansthat when x is written in the synta
ti
al rules, it 
ould be any variable in V ar.We have three di�erent kinds of literals in AWL � integer literals, boolean literals and dire
tion literals.n 2 IntLit (Integer literals)bl 2 BoolLit (Boolean literals)dl 2 DirLit (Dire
tion literals)Likewise, we have three kinds of expressions. We also de�ne the 
ategory exp, whi
h is the set of allexpressions. We will use this to shorten our synta
ti
al rules later in this 
hapter.ae 2 AExpr (Arithmeti
 expressions)be 2 BExpr (Boolean expressions)de 2 DExpr (Dire
tion expressions)exp 2 AExpr [ BExpr [DExpr (All expressions)Variables, rules, turns, teams and ant types are identi�ed with names in AWL,x 2 Var (Variables)r 2 RuleName (Non turn based rule names)t 2 TurnName (Turn based rule names)at 2 AntTypeName (Ant type names)and 
an all be de
lared.DV 2 De
Var (Variable de
larations)DA 2 De
Array (Array de
larations)DMC 2 De
MemCommon (Common Memory de
larations)DMT 2 De
MemTeam (Teambrain Memory de
larations)DMP 2 De
MemPrivate (Private Memory de
larations)DR 2 De
Rule (Non turn based rule de
larations)DT 2 De
Turn (Turn based rule de
larations)DTEAM 2 De
Team (Team de
larations)DAT 2 De
AntType (Ant type de
larations)type 2 Type (Types)Rules and turns 
an have multiple parameters, so we de�ne a 
ategory for the formal parameters and a
ategory for the a
tual parameters.PF 2 FParm (Formal parameter list)PA 2 AParm (A
tual parameter list)And last, but not least, we have the 
ommands and the world 
onstru
t.S 2 Com (Commands)w 2 World (World program)22



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.3. ENVIRONMENT3.2.2 Constru
ts for the Synta
ti
al CategoriesIn this se
tion we will de�ne the stru
ture of the elements in the synta
ti
al 
ategories. The stru
tureof literals, variables and the names of rules, turns, ant types and teams are given in the 
on
rete syntax,and sin
e those 
ategories have no real semanti
 value, we will not spe
ify their stru
ture again here.The interesting 
ategories are the ones with a
tual semanti
 value. Table 3.1 shows the stru
ture of the
onstru
ts for those 
ategories.ae ::= n j x j x[ae℄ j 
mem x jtmem x jpmem x j r(PA) j ae1+ae2 j ae1�ae2j ae1�ae2 j ae1=ae2 j (ae) j getProperty(ae)be ::= bl j x j x[ae℄ j 
mem x jtmem x jpmem x j r(PA) j ae1==ae2 j ae1<ae2j ae1>ae2 j ae1<=ae2 j ae1>=ae2 j ae1! =ae2 j be1==be2j be1! =be2 j !be j (be) j de1==de2 j de1! =de2 j getProperty(ae)de ::= dl j x j x[ae℄ j 
mem x jtmemx jpmem x j r(PA) j (de)j getProperty(ae)S ::= x=exp; j r(PA); j endturn t(PA);
mem x = exp; j x[ae℄ = exp;j tmem x = exp; jpmem x = exp; j S1 S2 j skip;j return exp; j if(be) fS1g else fS2gj while(be) fSg j pro
ess(ae; ae; at); j setProperty(ae; exp)DV ::= var x : type = exp;DV j �DA ::= array x[n℄ : type = exp; j �DR ::= rule r(PF ) fDVDASgDR j rule r(PF ) : type fDVDASgDR j �DT ::= turn t(PF ) fDVDASgDT j �DAT ::= anttype at fDV DASgDAT j �DTEAM ::= 
reateTeam(x);DTEAM j �DMC ::= private var x : type;DMC j �DMT ::= teambrain var x : type;DMT j �DMP ::= 
ommonvar x : type;DMP j �PF ::= var x : type; PF j �PA ::= exp; PA j �w ::= world(z1; z2)fDMC DMT DMP DT DR DAT mainfDTEAM DV DA SggTable 3.1: Abstra
t syntax for AWL3.3 EnvironmentWe will use the basi
s of the environment-store model1, when de�ning our environments. In short thismeans that e.g. variables bind to storage lo
ations, and storage lo
ations bind to values.So we have a set of lo
ations Lo
 (like the memory of a normal 
omputer). We will 
all elements in thisset l. Also, we have a fun
tion whi
h, given a lo
ation, will return a value. The values of our model arethe natural numbers Z, boolean values B and dire
tions D.Store = Lo
 ,! Z [B [DElements in Store are 
alled sto. Note that the relationship between Store and Lo
 is a partial fun
tion,sin
e not all lo
ations need to have a value. We assume that we have an unlimited sour
e of storagelo
ations.We de�ne an update notation for Store. The store sto [l 7! v℄ is the store sto0 de�ned bysto0 (l0) = � sto (l0)v if l0 6= lif l0 = l1[1, p. 86℄ 23



3.3. ENVIRONMENT CHAPTER 3. OPERATIONAL SEMANTICS FOR AWLWORLD = 0MAXANTS = 1MAXFOOD = 2TEAMCOUNT = 3CURRENTTEAM = 4CURRENTANT = 5COMMONDECLS = 6TEAMBRAINDECLS = 7PRIVATEDECLS = 8FOODBASE = 9Table 3.2: Lo
ation 
onstants.ANTSIZE = ANTALLOC + sto(PRIVATEDECLS)This 
al
ulation results in the number of storage lo
ation sallo
ated to ea
h antTEAMANTSSIZE = sto(ANTCOUNT ) �ANTSIZEThis 
al
ulation results in the number of storage lo
ationsallo
ated to all ants on ea
h team.FIRSTTEAM = COMMONBASE + sto(COMMONDECLS) + sto(MAXFOOD) � 2This 
al
ulation results in the lo
ation where the �rst team is allo
ated.TEAMSIZE = TEAMALLOC + sto(TEAMBRAINDECLS) +TEAMANTSIZEThis 
al
ulation results in the number of storage lo
ationsallo
ated to ea
h team.COMMONBASE = FOODBASE + FOODCOUNT � 2This 
al
ulation results in the base storage lo
ation of
ommon memory variables.Table 3.3: Prede�ned 
al
ulations.3.3.1 Storage Stru
tureThe data elements of AWL has a somewhat prede�ned storage lo
ation. The �rst se
tion of memory isreserved to a number of keys values, su
h as the size of the ant world and the maximum number of ants.In this part of the memory we also �nd the 
ommon ant memory variables, and the ant food 
oordinates.The next se
tion of memory is dedi
ated to the ant teams. Ea
h team have some basi
 des
ribing values,and their own 
opy of the de
lared teambrain variables. Also ea
h team has allo
ated storage for themaximum number of ants possible, and ea
h ant has its own 
opy of the de
lared private variables (aswell as its 
oordinates). Figure 3.1 shows the stru
ture of the storage.Be
ause of this stru
ture, some semanti
 rules need to make list of 
al
ulations. To simplify the 
al-
ulations we de�ne lo
ation 
onstants to use instead of numbers. The 
onstants are de�ned in table3.2.Looking at �gure 3.1 we also see that an ant has two 
oordinates allo
ated (besides the private memory),and that a team has four. We de�ne the 
onstant values ANTALLOC = 2 and TEAMALLOC = 4 .Even with the de�ned 
onstants, the 
al
ulations 
an get quite long. Even though ea
h small 
al
ulationis not 
ompli
ated, a long list of simple 
al
ulations still looks 
onfusing. We will therefore prede�nesome of the 
al
ulations here, and refer to them in the semanti
 rules. The prede�ned 
al
ulations areshown in table 3.3. To understand the 
al
ulations refer to storage stru
ture illustrated in �gure 3.1.24



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.3. ENVIRONMENT
STARTTEAM
è
 18
 Team - 0 - no


19
 Team - 0 -
nextant


20
 Team - 0 - Base X


21
 Team -0 - Base
 Y


22
 Team -0-team var-0


23
 Team -0-team var-1


24
 Team -0-team var-j


25
 Ant - 0 - X Coord


26
 Ant - 0 -
 Y
 Coord


27
 Ant - 0 - private var -
 0


28
 Ant - 0 - private var -1


29
 Ant - 0 - private var -
 k


30
 Ant - 1 - X Coord


31
 Ant - 1-
 Y
 Coord


32
 Ant - 1 - private var -
 0


33
 Ant - 1 - private var -1


34
 Ant - 1 - private var -
 k


35
 Ant - i - X Coord


36
 Ant - i -
 Y
 Coord


37
 Ant - i - private var -
 0


38
 Ant - i - private var -1


39
 Ant - i - private var -
 k


40
 Team - 1 - no


41
 Team - 1 -
nextant


42
 Team - 1 - Base X


43
 Team -1 - Base
 Y


44
 Team -1-team var-0


45
 Team -1-team var-1


46
 Team -1-team var-j


WORLD
è
 0
 World size

MAXANTS
è
 1
 Max number of ants

MAXFOOD
è
 2
 Max pieces of food


TEAMCOUNT
è
 3
 Number of teams

CURRENTTEAM
è
 4
 Current team


CURRENTANT
è
 5
 Current ant

COMMONDECLS
è
 6
 Common variable count


TEAMDECLS
è
 7
 Team variable count

PRIVATEDECLS
è
 8
 Private variable count


FOODBASE
è
 9
 food - 0 -X


10
 food - 0 -
Y


11
 food - 1 -X


12
 food - 1 -
Y


13
 food -
 l
 -X


14
 food -
 l
 -
Y

COMMONBASE
è
15
 Common var - 0


16
 Common var -1


17
 Common var -i


Figure 3.1: Memory ordering with lo
ations
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3.3. ENVIRONMENT CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL3.3.2 Variable EnvironmentOur variable environment is a partial fun
tion from variables to lo
ations ( partial be
ause not all possiblevariable names are ne
essarily bound to a lo
ation). We have to 
onsider arrays, whi
h means that weneed to keep tra
k of array sizes. Also in the semanti
 rules regarding ant memory variables, we need tostore an index number (this is elaborated in the parti
ular se
tion).There are three di�erent variable types in AWL, and this should also be stored in the variable environment.We 
an now de�ne the set of variable environments asEnvV = (Var ,! Type� Lo
) [(Var ,! Type� Lo
� Z ) [(Var ,! Type� Z ) [(fnext; returng ,! Lo
)We introdu
e the elements next and return with a spe
ial purpose in our variable environment. Theelement next is used as a pointer to the next free lo
ation. The element return is used to store returnvalues for rules in AWL.We de�ne an update notation for EnvV. The environment envV [x 7! (type; l)℄ is the environment env0Vde�ned by env 0V (y) = � envV (y)(type; l) if y 6= xif y = xThe same notation applies for the rest of this environment as well as the rest of the environments de�nedin this report.3.3.3 Pro
edure EnvironmentThere are two di�erent pro
edure-like 
onstru
ts in AWL - rules and ant types. We will store both ofthem in the same pro
edure environment.Rules in AWL 
an be both TB (turn based) rules and NTB (non turn based) rules. Both 
an havemultiple parameters, but only NTB rules 
an return a value. Rules in AWL have stati
 variable bindings.Sin
e it is impossible to de
lare additional rules after initializing the main se
tion of a program, it ismeaningless to have stati
 rule bindings, so we 
hoose to have dynami
 rule bindings.An ant type is similar to a rule, ex
ept it does not take any parameters, and it 
an not return any value.Like rules, ant types have stati
 variable bindings, dynami
 rule bindings.With that in mind, the de�nition of our pro
edure environment looks like this.EnvP = (RuleName ,! Com� FParm� EnvV �De
Var�De
Array�Type [(RuleName ,! Com� FParm� EnvV �De
Var�De
Array) [(TurnName ,! Com� FParm� EnvV �De
Var�De
Array) [(AntTypeName ,! Com� EnvV �De
Var�De
Array)For ea
h pro
edure we store the 
ommands, the parameters, the 
urrent variable environment, and thevariable and array de
larations in our rule environment2. For rules with a return type, we store returntype as well.At the time of pro
edure de
laration, only ant memory variables will have been previously de
lared. Thismeans that these are the only outside variables that 
an be a

essed inside a pro
edure (disregarding thesetProperty 
ommand, whi
h 
an alter any memory lo
ation).2We also store the de
larations be
ause AWL does not have a nested blo
k stru
ture26



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.3. ENVIRONMENT3.3.4 Literal Fun
tionsWe have three kinds of literals in AWL; integer literals, boolean literals and dire
tion literals. Sin
e theliterals are only synta
ti
 representations, we need a way to de�ne the meaning of a literal.We de�ne the fun
tion N whi
h, for any integer literal, returns the 
orresponding numeri
 value.N : IntLit! ZSo N [[4℄℄ = 4 where 4 is an integer literal and 4 is the numeri
 value 4 and so on.For boolean literals we de�ne the fun
tion B.B : BoolLit! Boolwhere B [[true℄℄ = tt and B [[false℄℄ = ff . So true is a synta
ti
 representation and tt is the value. The sameapplies to false and ff .Last, we have dire
tion literals for whi
h we de�ne the fun
tion D.D : DirLit! DirThe spe
i�
 de�nition of D is shown in the table below.DirLit Dirleft llright rrup uudown dd
enter 

3.3.5 Other Fun
tionsTo make our semanti
 rules as simple as possible, we de�ne di�erent fun
tions that we use when buildingthe rules.Our variable environment 
ontained the element next, whi
h was a pointer to the next free storagelo
ation. However we have to update next manually, and for that we need a fun
tion. We de�ne thefun
tion new. new : (Lo
 [ Lo
�Z! Lo
)and more spe
i�
 new (l) = l + 1 and new (l ; z) = l + zAnother fun
tion whi
h is used is the ran fun
tion. This fun
tion takes a natural number greater thanzero and returns a value in the range 0 to the in
oming number minus one. The formal des
ription ofthis fun
tion is as follows. ran : Z! ZFinally we need to de�ne two fun
tions, whi
h will help us determine the base storage lo
ation of aspe
i�
 team and a spe
i�
 ant. AWL has a well de�ned storage stru
ture, whi
h means that 
al
ulationsare needed to rea
h these base lo
ations. We de�ne the two fun
tions teamLo
 and antLo
.27



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWLteamLo
 : Z! ZantLo
 : Z�Z! ZWe de�ne the pre
ise de�nition of teamLo
 to beteamLo
(zteam ) = FIRSTTEAM + zteam �TEAMSIZEand the pre
ise de�nition of antLo
 to beantLo
(zteam ; zant ) = teamLo
(zteam ) + zant �ANTSIZE3.4 Transition SystemsIn this se
tion we will de�ne the transition systems of our operational semanti
s. We will de�ne onetransition system per synta
ti
al 
ategory (only 
ategories with a semanti
 value). For ea
h system, wewill de�ne the 
on�gurations, the transition relation, and the end 
on�gurations.Ea
h transition system is de�ned by a 3-tuple: (� ;!;T )where � is the 
on�gurations (states) of the transition system, and T is the end 
on�gurations. ! is thetransition relation, whi
h de�nes how to get from one 
on�guration to another.The transition relation for a given transition system will be de�ned by 
reating a semanti
al rule forevery synta
ti
al 
onstru
t.As a last note before going through the di�erent synta
ti
al 
ategories, we de�ne a semanti
al rule[Expression℄ that a
ts as a synonym for the three di�erent kinds of expressions in AWL. This means thatwhenever we write envP ; envV :sto ` exp !exp vit 
overs the following: envP ; envV ; sto ` ae !ae zenvP ; envV ; sto ` be !be benvP ; envV ; sto ` de !de d3.4.1 Arithmeti
 ExpressionsThe transition system for arithmeti
 expressions should evaluate arithmeti
 expressions to their values,whi
h are numbers. So we de�ne the transition system (�AExpr ;!ae ;TAExpr ), where �AExpr = AExpr [ Zand TAExpr = Z.Transitions are on the form envP ; envV ; sto ` ae !ae z .We de�ne !ae by the semanti
al rules in table 3.4.The rule [ae-add℄ shows that the synta
ti
 
onstru
t ae1 + ae2 will evaluate to the number z, if ae1evaluates to the number z1, and ae2 evaluates to number z2 where z = z1+z2. Subtra
tion, multipli
ationand division follow the same pattern.An arithmeti
 expression 
an be a single integer literal. In that 
ase we use the rule [ae-lit℄, whi
h statesthat the integer literal n will evaluate to the number z if N [[n℄℄ = z . N was the fun
tion whi
h given aninteger literal returned the 
orresponding number. This rule is an axiom, sin
e it has no premise, and28



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS
[ae-add℄envp ; envV ; sto ` ae1 !ae z1 envp ; envV ; sto ` ae2 !ae z2envp ; envV ; sto ` ae1+ae2 !ae z where z = z1 + z2[ae-sub℄envp; envV ; sto ` ae1 !ae z1 envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1�ae2 !ae z where z = z1 � z2[ae-mult℄envp; envV ; sto ` ae1 !ae z1 envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1�ae2 !ae z where z = z1 � z2[ae-div℄envp; envV ; sto ` ae1 !ae z1 envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1=ae2 !ae z where z = z1z2Table 3.4: Semanti
s for arithmeti
 
al
ulations

[ae-par℄envp; envV ; sto ` ae!ae z1envp; envV ; sto ` (ae) !ae z1[ae-lit℄envp; envV ; sto ` n!ae z if N [[n℄℄ = z[ae-var℄envp; envV ; sto ` x!ae z if envV (x) = (integer; l) and sto (l) = z[ae-array℄envp; envV ; sto ` x[ae℄!ae z where envp; envV ; sto ` ae!ae z00and if envV (x) = (integer; l; z0) andz = sto (l + z00) and z00 < z0 and z00 � 0[ae-rule
all℄
PF ; env0V [next 7! new (l)℄�!PF env00VenvP ` 
PA; env00V [next 7! new (l)℄ ; sto�!PA �env3V ; sto0�envP ` 
DV ; env3V ; sto0�!DV �env4V ; sto00�envP ` 
DA; env4V ; sto00�!DA �env5V ; sto3�envP ; env5V [return 7! l℄ ` 
S; sto3�! sto4envV ; sto ` r(PA) !ae zwhere l = envV (next) and z = sto4 �env5V (return)�and if envP (r) = �S ;PF ; env 0V ;DV ;DA; integer�Table 3.5: Semanti
s for literals, parentheses, variables, arrays and rule 
alls.
29



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[ae-getProperty℄envp ; envV ; sto ` getProperty(ae) !ae zwhere envV ; sto ` ae!ae z1and z = sto (z1)Table 3.6: GetProperty for arithmeti
 expressions[ae-
ommon-var℄envp; envV ; sto ` 
mem x!ae z1where envV (x) = (integer; z2) and z1 = sto (COMMONBASE + z2 )[ae-team-var℄envp; envV ; sto ` tmem x!ae z1where envV (x) = (integer; z2) andz1 = sto (teamLo
 (sto (CURRENTTEAM )) + TEAMALLOC + z2 )[ae-private-var℄envp; envV ; sto ` pmem x!ae z1where envV (x) = (integer; z2) andz1 = sto (antLo
 (sto (CURRENTTEAM ) ; sto (CURRENTANT )) + ANTALLOC + z2 )Table 3.7: Memory variables for aewould therefore be a leaf if we 
onstru
ted a derivation tree of an AWL program, whi
h in
luded this
onstru
t. The rules [ae-var℄ and [ae-array℄ are also axioms.Rule [ae-var℄ states that a variable x evaluates to the number z, if the variable is bound to storage lo
ationl in the variable environment and l is bound to z in the storage. The rules for arrays and rule 
alls are alittle more 
ompli
ated, so we will des
ribe them more thoroughly.To evaluate the arithmeti
 expression x[ae℄, we �rst need to evaluate ae. Then we look up x in thevariable environment, whi
h returns the array type, the base storage lo
ation and the size of the array.Sin
e we don't want to referen
e storage outside the boundaries of our array, we 
he
k that the indexis greater than or equal to zero and smaller than or equal to the size of the array minus one (indexingstarts at zero). If this is the 
ase x[ae℄ evaluates to the number z. Note that if the type of the array isn'tinteger, then this rule will not apply to the expression.Only rules whi
h have a return type 
an be expressions, so the rule we are 
alling is bound to a spe
i�
type. Like our semanti
 rule for arrays, [ae-rule
all℄ will only apply, if this rule returns an integer. If this isthe 
ase, we lookup the rule in the pro
edure environment envp (r) whi
h returns all the information aboutthe rule needed to exe
ute it (S ;PF ; env 0V ;DV ;DAinteger). First we exe
ute the parameter de
larations(if it has any), so ea
h parameters get allo
ated a storage lo
ation. We then use the updated variableenvironment and storage when exe
uting the lo
al variable and array de
larations. We also allo
ate alo
ation for the return value. With all this done, we exe
ute the 
ommands of the rule, whi
h hopefullywill put a arithmeti
 value in the lo
ation allo
ated for the return value. The rule then evaluates to thereturn value.In table 3.6 we use getProperty(ae) to retrieve a value from the storage. The expression takes anotherarithmeti
 expression to look up a spe
i�
 lo
ation in the storage. This gives the programmer a

ess tothe entire memory.In table 3.7 we show how to get the value from a ant memory variable. We �nd the value of a 
ommonmemory variable by �rst using the fun
tion envV (x), whi
h will return a type (in this 
ase integer) and anumber z2, whi
h is the relative address of x. Sin
e the 
ommon memory variables have the base addressCOMMONBASE , we add z2 to the base. We apply sto and get that z = sto (COMMONBASE + z1 ).The prin
iple is the same for [ae-team-var℄ and [ae-private-var℄ ex
ept that we are using a di�erent basevalue. The base values are determined using the fun
tions teamLo
 and antLo
 de�ned in this 
hapter.30



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS[ae-random℄envp; envV ; sto ` random(ae) !ae zwhere envp; envV ; sto ` ae!ae z0 and z = ran(z0)Table 3.8: Random 
ommand[be-equals-ae-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 == ae2 !be ttwhere z1 = z2 [be-equals-ae-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 == ae2 !be ffwhere z1 6= z2[be-not-equals-ae-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1! = ae2 !be ttwhere z1 6= z2 [be-not-equals-ae-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1! = ae2 !be ffwhere z1 = z2Table 3.9: Boolean expressions for arithmeti
 equalityThe random 
ommand in table 3.8 takes an ae expression and returns a random value z. This value isfound by �rst having ae evaluated to a value z0 and then applying this value to random fun
tion ran.ran(z0) returns a value z where 0 � z < z0.
3.4.2 Boolean ExpressionsBoolean expressions are expressions, whi
h evaluate to truth/boolean values (ff or tt). So the transitionsystem for BExpr should evaluate a boolean expression to a boolean value b. We de�ne the system(�BExpr ;!be ;TBExpr ), where the 
on�gurations �BExpr = BExpr [ ftt ; ff g and the end 
on�gurationsTBExpr = ftt ; ff g. Transitions are on the form envp ; envV ; sto ` be 7! b.We de�ne !be by the semanti
al rules below. The rules are divided into smaller groups to maintain agood overview.The rules in table 3.9 de�ne how we determine if an arithmeti
 expression is or is not equal to anotherarithmeti
 expression. The rules [be-equals-ae-1℄ and [be-equals-ae-2℄ show that if we want to 
he
kwhether ae1 and ae2 are equal to ea
h other, we �rst evaluate the two expressions to the numbers z1 andz2. If these numbers are equal (in a mathemati
al sense), then the 
onstru
t ae1 == ae2 evaluates to tt- otherwise it evaluates to ff .In table 3.10 we perform relational arithmeti
s on two arithmeti
 expressions, ae1 and ae2. In [be-lower-than-1℄ and [be-lower-than-2℄ the two expressions are evaluated down to two values, z1 and z2. Whathappens next is that if z1 < z2, we 
an apply the rule [be-lower-than-1℄ and the rule will yield a tt.Otherwise we 
an apply the other be-lower-than rule [be-lower-than-2℄ and the value yielded is a ff . Theother three pairs of rules are very similar to [be-lower-than℄ pair in their 
onstru
t, and will also yieldeither tt or ff . 31



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[be-greater-than-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 > ae2 !be ttwhere z1 > z2 [be-greater-than-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ea2 !ae z2envp; envV ; sto ` ae1 > ae2 !be ffwhere z1 � z2[be-lower-than-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 < ae2 !be ttwhere z1 < z2 [be-lower-than-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 < ae2 !be ffwhere z1 � z2[be-greater-than-or-equals-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 => ae2 !be ttwhere z1 � z2 [be-greater-than-or-equals-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 => ae2 !be ffwhere z1 < z2[be-less-than-or-equals-1℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 =< ae2 !be ttwhere z1 � z2 [be-less-than-or-equals-2℄envp; envV ; sto ` ae1 !ae z1envp; envV ; sto ` ae2 !ae z2envp; envV ; sto ` ae1 =< ae2 !be ffwhere z1 > z2Table 3.10: Semanti
s for greater and lower-than 
onstru
ts[be-and-1℄envp; envV ; sto ` be1 !be ttenvp; envV ; sto ` be2 !be ttenvp; envV ; sto ` be1 and be2 !be tt [be-and-2℄envp; envV ; sto ` bei !be ffenvp; envV ; sto ` be1 and be2 !be ffwhere i 2 f1; 2g[be-or-1℄envp; envV ; sto ` be1 !be ffenvp; envV ; sto ` be2 !be ffenvp; envV ; sto ` be1 or be2 !be ff [be-or-2℄envp; envV ; sto ` bei !be ttenvp; envV ; sto ` be1 or be2 !be ttwhere i 2 f1; 2gTable 3.11: Semanti
s for 'and' and 'or' 
onstru
tsThe semanti
al rules in table 3.11 takes two boolean expressions and 
ompare them and, depending onthe rule, return a tt or a ff value. In [be-and-1℄ we say that given the environments envP ; envV and astore sto, both the boolean expressions be1 and be2 will evaluate to tt, and thus yield a tt. On the otherhand, in [be-and-2℄ we state that if just one of the two expressions does not yield a tt when evaluated,then the rule will yield an ff .The rule [be-and-2℄ is a
tually two rules put into one by the use of i, where i is the set of values f1; 2g.This means that either be1 or be2 will be evaluated to ff . Whi
h one is of no 
onsequen
e for the endresult whi
h would, in any 
ase, be ff .What happens in the [be-or℄ pair is just the opposite. If either of the two boolean expressions evaluateto tt, then the rule will yield a tt.When a boolean literal bl is en
ountered, we 
an apply [be-lit℄, found in table 3.12. This applies thefun
tion B[[bl ℄℄ and gets a b in return. b is either tt or ff . The des
ription of this 
an be found in se
tion3.3.4. 32



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS[be-lit℄envp; envV ; sto ` bl!be bif B[[bl ℄℄ = b [be-parenthesis℄envp; envV ; sto ` be!be benvp; envV ; sto ` (be) !be b[be-not-1℄envp; envV ; sto ` be!be ttenvp; envV ; sto `!be!be ff [be-not-2℄envp; envV ; sto ` be!be ffenvp; envV ; sto `!be!be ttTable 3.12: Semanti
s for boolean literals, parentheses and negations[be-var℄envp; envV ; sto ` x!be b if envV (x) = l and sto (l) = b[be-array℄envp; envV ; sto ` x[ae℄!ae b where envP ; envV ; sto ` ae!ae z00and if envV (x) = (boolean; l; z0) and b = sto (l + z00)0and z00 < z0 and z00 � 0[be-rule
all℄
PF ; env0V [next 7! new (l)℄�!PF env00VenvP ` 
PA; env00V [next 7! new (l)℄ ; sto�!PA �env3V ; sto0�envP ` 
DV ; env3V ; sto0�!DV �env4V ; sto00�envP ` 
DA; env4V ; sto00�!DA �env5V ; sto3�envP ; env5V [return 7! l℄ ` 
S; sto3�! sto4envV ; sto ` r(PA) !be bwhere l = envV (next) and b = sto4 �env5V (return)�and if envR (r) = �S ;PF ; env 0V ;DV ;DA; integer�Table 3.13: Semanti
s for variable, array and rule 
allsWhat happens in [be-parenthesis℄ is that the parenthesis are removed and the boolean expression be1 isevaluated to a b. The two 'not' rules [be-not-1℄ and [be-not-2℄ are very similar. They take a booleanexpression be, evaluate it to a b and then reverse the result, so that tt be
omes ff and vi
e versa.Assuming an environment envV and a store sto we 
an, in the rule [be-var℄ in table 3.13, �nd the booleanb of a variable x, if the variable x is bound to the storage lo
ation l (envV (x) = l) and l is bound to b inthe storage (sto (l) = b) .The other two rules in table 3.13 are similar to the ones in table 3.5.In tables 3.14 and 3.15 rules resembling those in table 3.9 are de�ned. What makes them di�erent is thetypes of expressions that are 
ompared. In [be-equals(be)-1℄ and [be-equals(be)-2℄ we have two booleanexpressions be1 and be2. These will � given an instan
e of the variable environment envV , the pro
edureenvironment envP and an instan
e of the store sto � evaluate to b1 and b2. b1 and b2 are then 
omparedand the result is returned. In [be-not-equals(be)-1℄ and [be-not-equals(be)-2℄ the same happens, ex
eptthat the result is negated.Table 3.16 is identi
al to 3.6, ex
ept that it evaluates to a boolean value. The same applies to table 3.17whi
h shows the semanti
 rules of a

essing boolean ant memory variables.3.4.3 Dire
tion ExpressionsDire
tional expressions resemble boolean expressions in that they 
an only result in a �nite amount ofvalues. These values are (

; ll; rr; uu; dd). The transition system is de�ned as (�DExpr ;!de ;TDExpr ),where the 
on�gurations �DExpr = DExpr [ f

; ll ; rr ; uu; ddg , and the end 
on�guration TDExpr is theset f

; ll; rr; uu; ddg. We de�ne our transitions to have the form envP ; envV ; sto ` de 7! d, whi
h means33



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[be-equals(be)-1℄envp; envV ; sto ` be1 !be b1envp; envV ; sto ` be2 !be b2envp; envV ; sto ` be1 == be2 !be ttwhere b1 = b2 [be-equals(be)-2℄envp; envV ; sto ` be1 !be b1envp; envV ; sto ` be2 !be b2envp; envV ; sto ` be1 == be2 !be ffwhere b1 6= b2[be-not-equals(be)-1℄envp; envV ; sto ` be1 !be b1envp; envV ; sto ` be2 !be b2envp; envV ; sto ` be1! = be2 !be ttwhere b1 6= b2 [be-not-equals(be)-2℄envp; envV ; sto ` be1 !be b1envp; envV ; sto ` be2 !be b2envp; envV ; sto ` be1! = be2ffwhere b1 = b2Table 3.14: Semanti
s for equality of boolean expressions[be-equals(de)-1℄envp; envV ; sto ` de1 !de d1envp; envV ; sto ` de2 !de d2envp; envV ; sto ` de1 == de2 !be ttwhere d1 = d2 [be-equals(de)-2℄envp; envV ; sto ` de1 !de d1envp; envV ; sto ` de2 !de d2envp; envV ; sto ` de1 == de2 !be ffwhere d1 6= d2[be-not-equals(de)-1℄envp; envV ; sto ` de1 !de d1envp; envV ; sto ` ae2 !de d2envp; envV ; sto ` de1! = de2 !be ttwhere d1 6= d2 [be-not-equals(de)-2℄envp; envV ; sto ` de1 !de d1envp; envV ; sto ` ae2 !de d2envp; envV ; sto ` de1! = de2 !be ffwhere d1 = d2Table 3.15: Semanti
s for equality of dire
tion expressions[be-getProperty℄envp; envV ; sto ` getProperty(ae) !ae bwhere envP ; envV ; sto ` ae!ae z and b = sto (z)Table 3.16: getProperty for boolean expression[be-
ommon-var℄envp; envV ; sto ` 
mem x!ae bwhere (integer; z) = envV (x) and b = sto (COMMONBASE + z)[be-team-var℄envp; envV ; sto ` tmem x!ae bwhere (integer; z) = envV (x) andb = sto (teamLo
 (sto (CURRENTTEAM )) + TEAMALLOC + z)[be-private-var℄envp; envV ; sto ` pmem x!ae bwhere (integer; z) = envV (x) andb = sto (antLo
 (sto (CURRENTTEAM ) ; sto (CURRENTANT )) +ANTALLOC + z)Table 3.17: Memory variables for boolean expressions34



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS[de-lit℄envP ; envV ; sto ` dl!de dwhere B[[dl ℄℄ = d [de-parenthesis℄envP ; envV ; sto ` de!de denvP ; envV ; sto ` (de) !de d[de-rule
all℄
PF ; env0V [next 7! new (l)℄�!PF env00VenvP ` 
PA; env00V [next 7! new (l)℄ ; sto�!PA �env3V ; sto0�envP ` 
DV ; env3V ; sto0�!DV �env4V ; sto00�envP ` 
DA; env4V ; sto00�!DA �env5V ; sto3�envP ; env5V [return 7! l℄ ` 
S; sto3�! sto4envV ; sto ` r(PA) !de dwhere l = envV (next) and d = sto4 �env5V (return)�and if envR (r) = �S ;PF ; env 0V ;DV ;DA; dire
tion�Table 3.18: Semanti
s for literals, parenthesis and rule 
alls[de-getProperty℄envV ; sto ` getProperty(ae) !de dwhere envV ; sto ` ae!ae z1d = sto (z1)Table 3.20: getproperty for dire
tion expressionthat a dire
tion expression will give a d given a variable environment envV , a pro
edure environmentenvp and a store sto.In the rules below we will be giving the semanti
 rules for dire
tion expressions !de . Sin
e all thesemanti
 rules for this transition system are almost identi
al to those of the already de�ned systems, theywill stand un
ommented.[de-var℄envP ; envV ; sto ` x!de d if envV (x) = (dire
tion; l) and sto l = d[de-array℄envP ; envV ; sto ` x[ae℄!de d where envP ; envV ; sto ` ae!ae z00and if envV (x) = (dire
tion; l; z0) and d = sto (l + z00)and z00 < z0 and z00 � 0Table 3.19: Semanti
s for [de-var℄ and [de-array℄3.4.4 Variable De
larationsWe de�ne the transition system for De
Var to the 3-tuple (�De
Var ;!DV ;TDe
Var ). The 
on�gu-rations �De
Var are de�ned as (De
Var � EnvV � Store) [ EnvV � Store, and the end 
on�gurationTDe
Var = EnvV � Store.The transition relation is on the following formenvP ` hDV ; envV ; stoi !DV �env0V ; sto0�35



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[de-
ommon-var℄envP ; envV ; sto ` 
mem x!de dwhere envV (x) = (integer; z) and d = sto (COMMONBASE + z)[de-team-var℄envP ; envV ; sto ` tmem x!de dwhere envV (x) = (integer; ; z) andd = sto (teamLo
 (sto (CURRENTTEAM )) + TEAMALLOC + z)[de-private-var℄envP ; envV ; sto ` pmem x!de dwhere envV (x) = (integer; z) andd = sto (antLo
 (sto (CURRENTTEAM ) ; sto (CURRENTANT )) +ANTALLOC + z)Table 3.21: memory variables for dire
tionand is de�ned by the semanti
 rules below. Note that normal variables in AWL must by de
lared with avalue. This is the reason that the transitions alter both the variable environment and the store.[Dv-variable de
laration℄envP ` hDV ; envV [x 7! (type; l)℄ [next 7! new (l)℄ ; sto [l 7! v℄i !DV �env0V ; sto0�envP ` hvar x : type = exp;DV ; envV ; stoi !DV �env0V ; sto0�where envP ; envV ; sto ` exp!exp v and l = envV (next)[Dv-variable-de
laration-empty℄envP ` h"; envV ; stoi !DV (envV ; sto)Table 3.22: Variable de
larationTable 3.22 shows that the de
laration of a variable results in� the variable name is bound to the next free storage lo
ation, and� that storage lo
ation is bound to the value of the variable.The pointer to the next free lo
ation next is updated to point on the next free address. We use the fun
tionnew to a

omplish this. We de�ne the empty de
laration rule to end a list of variable de
larations.3.4.5 Array De
larationsFor the transition system (�De
Array ;!DA ;TDe
Array ) we have the following 
on�gurations�De
Array = (De
Array � EnvV � Store) [ EnvV � Storeand the following end 
on�gurations TDe
Var = EnvV � StoreThis is similar to that of variable de
larations. The transition relation for this 
ategory is on the form36



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMSenvP ` hDA; envV ; stoi !DA �env 0V ; sto0�The transition results in a 
hanged variable environment env0V and a 
hanged store sto0, sin
e arraysmust be de
lared with a value The transition relation is de�ned by the semanti
 rules below.[Da-array-de
laration℄envP ` hDA; envV [x 7! (type; l; z)℄[next 7! new (l; z))℄; sto[li 7! v℄i !DA �env0V ; sto0�envP ` harray x[n℄ :type=exp;DA; envV ; stoi !DA �env0V ; sto0�whereenvP ; envV ; sto ` exp!exp v and envP ; envV ; sto ` n!ae z andi 2 [0::z � 1℄ and l = envV (next) and z > 0[Da-array-de
laration-empty℄envP ` h"; envV ; stoi !DA (envV ; sto)Table 3.23: Array de
larationIn table 3.23 we show how an array de
laration is applied in our semanti
s. The de
laration of an arrayresults in� the array name x is bound the the �rst storage lo
ation of the array, and� ea
h storage lo
ation li in the array are bound to the applied value v.We have the empty rule to end a list of array de
larations.3.4.6 Rule De
larationsThe transition system for rule de
larations is de�ne as (�De
Rule ;!DR ;TDe
Rule), where �De
Rule = (De
Rule � EnvP ) [ EnvPand TDe
Rule = EnvP .So we have that a 
on�guration is a pro
edure environment follow by more de
larations, or just a pro-
edure environment. The end 
on�guration is when all rules have been de
lared, and thus we have onlythe updated pro
edure environment.The transition relation is on the form envV ` hDR; envP i !DR env 0P , and is de�ned by the semanti
rules below. [Dr-rule-without-return℄envV ` hDR; envP [r 7! (S;PF ; envV ;DV ; DA)℄i !DR env0PenvV ` hrule r(PF ) fDV ;DASgDR; envP i !DR env0P[Dr-rule-with-return℄envV ` hDR; envP [r 7! (S;PF ; envV ;DV ; DA; type)℄i !DR env0PenvV ` hrule r(PF ) :type fDV ;DA; SgDR; envP i !DR env0P[Dr-rule-empty℄envV ; sto ` h"; envP i !DR envPTable 3.24: Rule de
larations37



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWLTable 3.24 shows that ea
h rule de
laration will bind the rule name to its formal parameters, its de
lara-tions and its 
ommands. For rules with a return type the return type is also stored. Sin
e we have stati
variable bindings, we also store the variable environment as it looks at the time of the rule de
laration.The empty rule de
laration is de�ned to end a list of rule de
larations.When a rule is 
alled (des
ribed in the transition system of S), we 
an fet
h these stored values, andapply them to the 
omputation as needed.3.4.7 Turn and Ant Type De
larationsThe transition system for De
Turn ((De
Turn � EnvP ) [ EnvP ;!DT ;EnvP ) and the transition systemfor De
AT (De
AntType � EnvP [ EnvP ;!DAT ;EnvP ) resembles that of De
Rule, and the de�nition oftheir transition relation is very similar.Turn de
larations are on the form envV ` hDT ; envP i !DT env 0P and !DT is de�ned in table 3.25. Wesee that the only di�eren
e from rule de
larations is that turns 
an have no return type.[Dt-turn℄envV ` hDT ; envP [t 7! (S;PF ; envV ; DV ;DA)℄i !DT env0PenvV ` hturn t(PF ) fDV DASgDT ; envP i !DT env0P[Dt-turn-empty℄envV ` h"; envP i !DT envPTable 3.25: Turn de
larationAnt type de
larations are on the similar form envV ` hDTEAM ; envP i !DAT (; env 0P ), and!DAT is de�nedin table 3.26. Ant types 
an not take any parameters or return any value.[Dat-anttype-de
laration℄envV ` hDAT ; envP [at 7�! (S; envV ;DVDA)℄i !DAT �env0P �envV ` hanttype atfDVDASgDAT ; envP i !DAT �env0P �Table 3.26: Ant type de
laration3.4.8 Common Memory De
larationsThe transition system (�De
MC ;!DMC ;TDe
MC ) is de�ned by the following 
on�gurations.�De
MC = (De
MC � EnvV � Store) [ (EnvV � Store)So a 
on�guration in this transition system 
an either be an updated variable environment and store,where we still have de
larations to perform. Or all variables have been de
lared, and we have the updatedvariable environment and store.We therefore have the end 
on�gurations de�ned as:TDe
MC = EnvV � Store38



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMSThe transition relation for !DMC is on the formenvP ` hDMC ; envV ; stoi !DMC �env 0V ; sto0�and it is de�ned by the semanti
 rules of table 3.27.[Dm
-
ommon℄envP ` hDMC ; envV [x 7! (type; z)℄ [next 7! new(l)℄ ; sto[l 7! v ℄[COMMONDECLS 7! z + 1 ℄i!DMC �env 0V ; sto0�envP ` h
ommon var x : type = exp ;DMC ; envV ; stoi !DMC �; env0V ; sto0�where envP ; envV ; sto ` exp! v and envV (next) = l and z = sto(COMMONDECLS)[Dm
-
ommon-empty℄envP ` h�; envV ; stoi !DMC (envV ; sto)Table 3.27: Common memoryCommon variables are very di�erent from normal variables, both in the way they are de
lared and stored,and in the way they are referen
es after de
laration. As shown in �gure 3.1 we have a storage lo
ation
ontaining the number of 
ommon variable de
larations made (COMMONDECLS ). We in
rement thisnumber by one every time a 
ommon variable is de
lared. Furthermore we store the value of the number,together with the type of variable, in the variable environment. This enables us to referen
e 
ommonvariables by making the 
al
ulation sto(COMMONBASE + z ), where z is the index of the given variable.We update the storage sto with the value of the variable, and moves the pointer next to the next freelo
ation.3.4.9 Team Memory De
larationsThe transition system (�De
MT ;!DMC ;TDe
MT ) is de�ned by the 
on�gurations.�De
MT = (De
MT � EnvV � Store) [ (EnvV � Store)and the end 
on�gurations TDe
MT = EnvV � StoreSo a team memory de
laration will result in an updated variable environment and an updated storage.The transition relation for !DMT is on the formenvP ` hDMT ; envV ; stoi !DMT �env 0V ; sto0�and is de�ned by the semanti
 rules in table 3.28.A team memory variable is de
lared without assigning a value to the variable. The semanti
 rule doeshowever update the storage, sin
e it in
rements the number of team variables de
lared by one (the numberis found in the storage lo
ation TEAMDECLS ). As with 
ommon variables, the variable name is boundthe value of this number, and the variable type in the variable environment.39



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[Dmt-team℄envP ` hDMT ; envV [x 7! (type; z)℄ ; sto[TEAMDECLS 7! z + 1 ℄i ! �env 0V ; sto0�envP ` hteambrain var x : type ;DMT ; envV ; stoi ! �; env0V ; sto0�where and z = sto(TEAMDECLS)[Dmt-team-empty℄envP ` h�; envV ; stoi !DMC (envV ; sto)Table 3.28: Team memory de
laration3.4.10 Private Memory De
larationsThe transition system (�De
MP ;!DMP ;TDe
MP) is de�ned by the 
on�gurations �De
MP = (De
MP � EnvV � Store) [ (EnvV � Store)and the end 
on�gurations TDe
MP = EnvV � Store. So we have that a private variable de
laration up-dates the variable environment and the storages.The transition relation for !DMP is on the formenvP ` hDMP ; envV ; stoi !DMP �env 0V ; sto0�and is de�ned by the semanti
 rules in table 3.29. The semanti
 rules are very similar to those of teamvariable de
larations, and will stand un
ommented.[Dmp-private℄envP ` hDMT ; envV [x 7! (z; type)℄ ; sto[PRIV ATEDECLS 7! z + 1℄i ! �env0V ; sto0�envP ` hprivate var x : type ;DMP ; envV ; stoi ! �; env0V ; sto0�where z = sto(PRIVATEDECLS)[Dmt-private-empty℄envP ` h�; envV ; stoi !DMC (envV ; sto)Table 3.29: Private memory de
laration3.4.11 CommandsWhere de
larations 
an alter both the environments and storage of AWL, 
ommands 
an only alter thestorage - e.g. assigning a new value to a variable. We therefore de�ne the transition system(Com � Store [ Store;!S ;Store)Transitions are on the form envP ; envV ` hS; stoi ! sto0, sin
e we need to know about the bindings ofpro
edures and variables to exe
ute a 
ommand 
orre
tly.The transition rules for !S are de�ned in the semanti
 rules below.40



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS[S-while-true℄envP ; envV ` hS; stoi !S sto00envP ; envV ` hwhile(be)fSg; sto00i !S sto0envP ; envV ` hwhile(be)fSg; stoi !S sto0where envP ; envV ; sto ` be!be tt[S-while-false℄envP ; envV ` hwhile(be)fSg; stoi !S stowhere envP ; envV ; sto ` be!be ffTable 3.30: While 
ommandTable 3.30 shows the semanti
s of a while 
ommand. If the 
ondition of the 
ommand is true, then weexe
ute the body, and apply the same while 
ommand on the updated storage. So the while 
ommand isde�ned re
ursively. If the 
ondition is false, then there are no 
hanges to the storage.[S-if-true℄envP ; envV ` hS1; stoi !S sto0envP ; envV ` hif(be)fS1gelsefS2g; stoi !S sto0where envP ; envV ; sto ` be!be tt[S-if-false℄envP ; envV ` hS2; stoi !S sto0envP ; envV ` hif(be)fS1gelsefS2g; stoi !S sto0where envP ; envV ` be!be ffTable 3.31: If-Else 
ommand[S-assign℄envP ; envV ` hx = exp; stoi !S sto[l 7! v℄where envP ; envV ; sto ` exp!exp v and envV (x) = l[S-
omp℄envP ; envV ` hS1; stoi !S sto00envP ; envV ` hS2; sto00i !S sto0envP ; envV ` hS1 S2; stoi !S sto0Table 3.32: Assign and Comp 
ommandThe semanti
 rules for the if-else 
ommand are de�ned in table 3.31. Again there are the two possibilitiesthat the 
ondition is either true or false. If the 
ondition is true then the body of if is exe
uted, otherwisethe body of else is exe
uted. The semanti
 rule for an assign 
ommand shows that to update the valueof a variable we �rst lookup the storage lo
ation, and then bind the new value to this lo
ation. Therule [S-
omp℄ shows that to exe
ute 
onse
utive 
ommands, we �rst exe
ute the �rst 
ommand, and thenexe
ute the next 
ommand on the updated storage.41



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL[S-assign-array℄envP ; envV ` hx[ae℄ = exp; stoi !S sto[llo
 7! v℄where envP ; envV ; sto ` ae!ae z1 and envV (x) = (type; l; z2) andllo
 = l + z1 and envP ; envV ; sto ` exp!exp v andz1 � 0 and z < z2Table 3.33: Array assign 
ommandTable 3.33 shows how to assign a new value to an element in an array. We �rst evaluate the arithmeti
expression to the index of the desired element, and lookup the base address of the array. We then addthese two values together and lookup the lo
ation in the storage. To make sure that we do not a

essstorage outside the array allo
ations, we 
he
k that the given index i between zero and the length of thearray (minus one).[S-
ommon memory assign℄envP ; envV ` h
mem x = exp; stoi !S sto[l 7! v℄where (type; z) = envV (x) and l = COMMONBASE + z[S-team memory assign℄envP ; envV ` htmem x = exp; stoi !S sto[l 7! v℄where (z; type) = envV (x) andl = teamLo
 (sto (CURRENTTEAM)) + TEAMALLOC + z[S-private memory assign℄envP ; envV ` hp x = exp; stoi !S sto[l 7! v℄where (z1; type) = envV (x) andl = antLo
 (sto (CURRENTTEAM ) ; sto (CURRENTANT )) + ANTALLOC + zTable 3.34: Memory assign 
ommands[S-rule-
all℄
PF ; env0V [next 7! new (l)℄�! env00VenvP ` 
PA; env00V [next 7! new (l)℄ ; sto�! �env3V ; sto0�envP ` 
DV ; env3V ; sto0�!DV �env4V ; sto00�envP ` 
DA; env4V ; sto00�!DA �env5V ; sto3�envP ; env5V ` 
S; sto3�!S sto4envP ; envV ` hr(PA);; stoi !S sto4where l = envV (next) and envP (r) = �S ;PF ; env 0V ;DV ;DA�[S-turn-
all℄
PF ; env0V [next 7! new (l)℄�! env00VenvP ` 
PA; env00V [next 7! new (l)℄ ; sto�! �env3V ; sto0�envP ` 
DV ; env3V ; sto0�!DV �env4V ; sto00�envP ` 
DA; env4V ; sto00�!DA �env5V ; sto3�envP ; env5V ` 
S; sto3�!S sto4envP ; envV ` hendturn t(PA);; stoi !S sto4where l = envV (next) and envP (t) = �S ;PF ; env 0V ;DV ;DA�Table 3.35: Rule and turn 
all 
ommands42



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS[S-setProperty℄envP ; envV ` hsetProperty(ae; exp);; stoi !S sto [l 7! v℄where envP ; envV ; sto ` ae!ae z and envP ; envV ; sto ` exp!exp v andl = z Table 3.37: Set property 
ommand[S-pro
ess℄envP ; envV ` hDV ; env0V [next 7! new (l)℄ ; stoi !DV (env00V ; sto0)envP ; envV ` hDA; env00V ; sto0i !DV (env000V ; sto00)envP ; envV ` hS; sto00 [l1 7! z1℄ [l2 7! z2℄i !S sto000envP ; envV ` hpro
ess(ae1; ae2; at);; stoi !S sto000where �env 0V ;DV ;DAS� = envP (at), andenvP ; envV ; sto ` ae1 !ae z1 and envP ; envV ; sto ` ae2 !ae z2l1 = sto (CURRENTTEAM ) and l2 = sto (CURRENTANT )Table 3.38: Pro
ess 
ommandWhen assigning a value to a ant memory variable as done in table 3.34, we �rst lookup the variable'srelative address. We then lookup the base address of the memory type (e.g. for 
ommon variables wehave COMMONBASE). We 
an now update the storage at the base address added to the relativeaddress with the new value. Calling a rule as a 
ommand is similar to 
alling a rule as an expression -ex
ept that there is no storage allo
ated for a return value.[S-return℄envP ; envV ` hreturn exp;; stoi !S sto [l 7! v℄where l = envV (return) and envP ; envV ; sto ` exp! v[S-skip℄envP ; envV ` hskip;; stoi !S stoTable 3.36: Return and skip 
ommandIn table 3.36 we show the semanti
 rules for the return and the skip 
ommand. The skip 
ommand(obviously) does absolutely nothing. The return 
ommand evaluates its expression parameters, andstores the value in the lo
ation denoted by envV (return), whi
h have been updated by the rule 
all thatultimately lead to this 
ommand. The setProperty 
ommand updates a given lo
ation dire
tly in thestorage. This is of 
ourse a powerful 
ommand, but also dangerous, sin
e it makes it very easy for theprogrammer to make fatal mistakes.The pro
ess 
ommand takes a team number, a ant number and an ant-type name. Basi
ally this is just apro
edure 
all to the given ant type, ex
ept that we update the storage lo
ations CURRENTTEAM andCURRENTANT we the applied values. This a
hieves that the ant programmer do not need to worryabout his team number, or whi
h ant he is 
urrently pro
essing. The ant type 
an then be programmedas if there were just one ant. 43



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL3.4.12 Formal and A
tual ParametersThe formal parameters of a pro
edure is basi
ally variable de
larations. We therefore de�ne the transitionsystem �FParm � EnvV [ EnvV ;!PF ;EnvV �for formal parameter de
larations, whi
h shows that formal parameters only 
hange the variable environ-ment, sin
e they do not assign a value to the parameter.We also de�ne the transition system�AParm � EnvV � Store [ EnvV � Store;!PA ;EnvV � Store�for a
tual parameter assignments. A
tual parameters primarily 
hange the storage applying values toalready de
lared formal parameters. We do however move the pointer next in the variable environment.The transition relation for formal parameters!PF is on the form hPF ; envV i !PF env0V and are de�nedby table 3.39. The semanti
 rules shows that ea
h parameter will get its name bound to a storage lo
ationin the variable environment. [Pf-formal parameters℄hPF ; envV [x 7! l℄ [next 7! new (l)℄i ! env0Vhvar x : type;PF ; envV i !S env0Vwhere l = envV (next)[Pf-formal parameters-empty℄h�; envV i !S envVTable 3.39: Formal parametersThe semanti
 rules de�ning the !PA are on the form envP ` hPA; envV ; stoi ! (env0V ; sto0) and de�nedin table 3.40. [Pa-a
tual parameters℄envP ` hPA; envV [next 7! new (l)℄ ; sto [l 7! v℄i ! �env0V ; sto0�envP ` hexp;PA; envV ; stoi !PA �env0V ; sto0�where l = envV (next) and envP ; envV ; sto ` exp!exp v[Pa-a
tual parameters-empty℄envP ` h�; envV ; stoi !PA (envV ; sto)Table 3.40: A
tual parameters3.4.13 Team De
larationWhen a team is de
lared in AWL, we allo
ate spa
e for the following data:44



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.4. TRANSITION SYSTEMS� The primary team attributes - team number, next ant (
urrently a
tive ant 
ount) and the x , y
oordinates of the team base.� A 
opy of the de
lared teambrain memory variables.� The number of ants (found in the lo
ation MAXANTS) and for ea
h ant a 
opy of the de
laredprivate memory variables.The primary attributes of a team 
an be assigned values at team de
laration. The team number is just ain
rementing number (stored at TEAMCOUNT ), and the x , y 
oordinates are 
hosen randomly. Sin
ethere are no a
tive ants on a newly de
lared team, the value of the next ant storage lo
ation should bezero.So a team de
laration will alter the variable environment and the storage. We de�ne the transition system��De
Team ;!DTEAM ;TDe
Team�with the 
on�gurations �De
Team = De
Team � EnvV � Store [ EnvV � Storeand the end 
on�gurations TDe
Team = EnvV � StoreTransitions will be on the form envP ` hDTEAM ; envV ; stoi !DTEAM (env 0V ; sto0) and the transition re-lation is de�ned in table 3.41. When a team is de
lared we lookup how many teams that have alreadybeen de
lared. We store this number as the team number at lo
ation l. The storage lo
ation denotedby lnt is the next free storage lo
ation (where the next team 
an be stored). The 
al
ulation of lnt takesthe base of the team being de
lared, and adds the total amount of lo
ations allo
ated to ea
h team. lnais the storage lo
ation storing the 
urrently a
tive ant 
ount, whi
h we set to zero. Finally we store therandom 
onstru
ted 
oordinates, and in
rement the number of de
lared teams by 1.[Dteam-
reateTeam℄envP `< DTEAM ;envV [x 7! (integer; l)℄ [next 7! lnt℄ ;sto [l 7! teamno℄ [lna 7! 0℄ [lx 7! x℄ [ly 7! y℄ [TEAMCOUNT 7! (z + 1)℄!DTEAM �env0V ; sto0�envP ` h
reateTeam(x);DTEAM ; envV ; stoi !DTEAM �env0V ; sto0�wherel = envV (next) ,lna = new(l) , lx = new(l; 2), ly = new(l; 3),teamno = sto (TEAMCOUNT ) ,lnt = new(l ;TEAMSIZE),x = ran (sto (WORLDSIZE)) and y = ran (sto (WORLDSIZE))[Dteam-
reateTeam-empty℄envP ` h"; envV ; stoi ! (envV ; sto)Table 3.41: team de
laration45



3.4. TRANSITION SYSTEMS CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL3.4.14 WorldThe de�nition of a world is a 
omplete AWL program. All other synta
ti
al 
onstru
ts are derivated fromthe world 
onstru
t, and thus it is what ties an AWL program together. The result of a world 
onstru
tis that storage has 
hanged, sin
e all de
larations are out of s
ope, when we step out of the de�ned world.The transition system de�ningWorld is (World � Store;!w ;Store). Transitions are on the form hw; stoi !w(sto0) , whi
h illustrates the point that only storage 
hanges. The transition relation !w is de�ned intable 3.42.[w-world℄envP ` hDCM ; envV [next 7! l℄ ; sto [WORLDSIZE 7! z1 ℄ [MAXANTS 7! z2 ℄ [MAXFOOD 7! z3 ℄i !DCM �env; sto1�envP ` 
DTMenv; sto1�!DTM �env; sto2� envP ` 
DPMenv; sto2�!DPM �env; sto3�envP ` 
DTEAM ; env3V ; sto3�!DTEAM �env4V ; sto4�env4V ` hDR; envP i !DR env1P env4V ` 
DT ; env1P �!DT env2Penv4V ` 
DAT ; env2P �!DAT �env3P �env3P ` 
DV ; env4V ; sto4�!DV �env5V ; sto5� env3P ` 
DA; env5V ; sto5�!DA �env6V ; sto6�env3P ; env6V ` 
S; sto7�!S sto8hworld(n1n2n3)fDCMDTMDPMDR; DTDATmainfDTEAMDVDASgg; stoi !w sto8whereenvp; envV ; sto ` n1 !ae z1, envp; envV ; sto ` n2 !ae z2 , envp; envV ; sto ` n3 !ae z3 andl = FOODBASE + sto(MAXFOOD) � 2Table 3.42: The world de
larationThe semanti
 rule [w-world℄ is large, but very straight-forward. A world de�nition is made up by thefollowing elements� The world parameters (size, ants and food)� Common, teambrain and private ant memory de
larations� Rule de
larations� Ant type de
larations� Team de
larations� Main se
tionSo to 
ompute a world, we �rst store the world parameters in the prede�ned storage lo
ationsWORLDSIZE,MAXANTS andMAXFOOD. Doing this we also move next to point at the next free lo
ation after thestorage allo
ated to food. We then run through all de
larations, and �nally we exe
ute the 
ommands inthe main se
tion of the program. 46



CHAPTER 3. OPERATIONAL SEMANTICS FOR AWL 3.5. STANDARD ENVIRONMENT3.5 Standard EnvironmentIn our language we provide methods for getting a value dire
tly from memory, and a method for settinga value dire
tly to memory. getProperty(ae) setProperty(ae; v)Using these methods requires the programmer to have a knowledge of how the data is stored, and thatis of 
ourse a problem. However, it is also to great a task to de�ne synta
ti
al 
onstru
ts and semanti
alrules for every desirable operation in AWL. This would simply result in a very large grammar, and somevery 
ompli
ated semanti
 rules. The solution to this is to introdu
e a standard environment, where highlevel fun
tions 
ould be implemented using the basi
 operations of AWL. An example of a fun
tion, that
ould very well be in a standard environment for AWL 
ould be getWorldSize(), whi
h would return thesize of the world. [getWorldSize℄pro
edure getWorldSize()freturn getproperty(0 ); gAnother pro
edure that might be helpful when 
reating a ant world 
ould be walk(var d : dire
tion),whi
h would move an ant in a given dire
tion, and perhaps also 
he
k to see if the moving ant 
ould
apture a base or kill an enemy ant.It is 
lear that the usability of AWL would be greatly in
reased with a standard environment, howeverat its 
urrent state, there is no standard environment in AWL. To introdu
e one we should expand thepro
edure environment to 
ontain normal pro
edure and fun
tions, whi
h should only be a

essible fromthe main se
tion and rules (ants should not have a

ess).An example of a another standard environment is the Java.lang pa
kage in JAVA, whi
h implementsmany useful methods using the basi
 operations of JAVA.3.6 Derivation TreeIn this se
tion we will show how we 
an use the semanti
s des
ribed in the previous se
tions to des
ribean exe
ution of a given program. We will give examples of how a derivation tree for a while 
ommandlooks like, and one for an equals expression. The derivation trees shows the di�erent stages a statementgoes through before ending up in the end state.While derivation tree.(2)envP ; envV ` hy = y � 1; ; stoi !S sto [l 7! (z1)℄ (3)vP ; envV ` hwhile(v > 0)fy = y � 1; g; sto0i !S sto0(1)envP ; envV ` hwhile(v > 0)fy = y � 1; g; stoi !S sto0(1)=Where envP ; envV ; sto ` (y > 0) ! tt; l = envV (y), andenvP ; envV ; sto ` y ! 1(2)=Where envP ; envV ; sto ` (y � 1) ! z1(3)=Where envP ; envV ; sto ` (y > 0) ! ff , and whereenvP ; envV ; sto ` y ! 0Here is a derivation tree for while. We see that in the �rst loop that y > 0 evaluates to true, and thereforewe need to exe
ute the 
ommands found within the while body. The 
ommand to be exe
uted is an assign
ommand that subtra
ts 1 from the variable y. This results in y being equal to 0. with the updatedstorage we 
all while again. This time y > 0 will evaluate to false, and the while loop will terminate. Ify had been equals e.g. 10, the tree would have been mu
h more 
omprehensive and we would have hadto loop through the while statement a lot more times.Equals arithmeti
 expression derivation tree.47



3.7. SUMMARY CHAPTER 3. OPERATIONAL SEMANTICS FOR AWLenvP ; envV ; sto ` 9 !ae z1 envP ; envV ; sto ` 8 ! z3 envP ; envV ; sto ` 5 ! z4envP ; envV ; sto ` 8 � 5 ! (z3 � z4)envP ; envV ; sto ` 9 == 8 � 5 !be ffWhere z1 6= (z3 � z4)We here show the derivation tree for an equals expression. We �rst evaluate the leftmost argumentto z1, we then pro
eed to evaluate the rightmost argument. This argument is a 
omposite arithmeti
expression. Be
ause of this we evaluate this �rst and get (z3 � z4). we now 
ompare these and get ffbe
ause z1 6= (z3 � z4). Logi
ally the more 
omplex the expression is the higher the derivation tree willspan. In this example we have a numeral and a multipli
ation expression as the logi
al parts of theboolean expression. The reason that these are the logi
al expressions is that this is so des
ribed in ourgrammar33.7 SummaryIn this 
hapter we have de�ned the operational semanti
s of AWL. To do so, we have de�ned synta
ti
al
ategories and spe
i�ed an abstra
t grammar, on whi
h we have based our transition systems. We havede�ned the environments and storage that AWL uses, and spe
i�ed fun
tions to aid us in des
ribing thesemanti
s. The semanti
s of all synta
ti
al 
onstru
ts have been de�ned in the transition relation of thetransition systems.Looking ba
k at this 
hapter, a reasonable question would be if it wouldn't be a lot easier just to des
ribethe semanti
s with words. Clearly it would make the semanti
s easier to understand when �rst readingthem. However the semanti
s are 
onstru
ted for implementation of the programming language, and itis very likely that semanti
s spe
i�ed only with words would 
ause 
onfusion and misunderstandings. Byusing a known notation and de�ning exa
tly how ea
h synta
ti
al 
onstru
t 
hanges the environment, weavoid 
onfusion.In the next 
hapter we will de�ne another operational semanti
s for the abstra
t ma
hine AWLAM.

3The BNF des
ribed in 
hapter 2 48



Chapter 4AWLAMIn this 
hapter we will de�ne the abstra
t ma
hine AWLAM, whi
h is shorthand notation for �Ant WarLanguage Abstra
t Ma
hine�. We will de�ne how the abstra
t ma
hine is designed and works, and alsowhi
h instru
tions it provides. The instru
tions will be des
ribed by an abstra
t syntax, and furthermorewe will give an operational semanti
s for it. We will use the abbreviation AM and the 
omposite word�abstra
t ma
hine� inter
hangeably. When we refer to AM it will be the AWLAM unless we have spe
i�edotherwise. Also we will use the normal terms asso
iated with sta
k operations, i.e. push and pop, whena value is added to the top of a sta
k, or when a value is removed from the top of a sta
k.As su
h the abstra
t ma
hine should be seen as an �abstra
t AM�. It means that the AM de�ned inthis 
hapter does not ne
essarily resemble how it a
tually will be implemented, but may be seen as anintermediate result. The reason for this is that we wish to bridge the semanti
 gap in a more gentlemanner, and it makes the pro
ess of proving our result a lot ni
er. The a
tual di�eren
e is not very big,and will be explained in the next se
tion.4.1 De�nition of AWLAMWe will now give a de�nition of the AM. The AM is made up from a set of registers, a 
ode store, adata store, a 
ode sta
k, and an evaluation sta
k. The registers point to various areas of the 
ode anddata store during the exe
ution of an AM program. The evaluation sta
k is used for dire
tion, booleanand arithmeti
 
al
ulations, the 
ode sta
k for keeping tra
k of whi
h instru
tions have to be exe
utedand the two stores will, as their names imply, be used for storage of program data and the program 
odeitself. Figure 4.1 on page 51 shows how the memory and the registers are laid out.There are nine registers whi
h are: �Current team� (CT ), �Current team memory� (CTM), �Current ant�(CA), �Current ant memory� (CAM), �Start team� (ST ), �Start data� (SD), �Next� (NEXT ), �Lo
als
ope� (LS), �Common memory� (CM) and �Program 
ounter� (PC). The CT register refers to thestart address of the 
urrent team, whi
h means the team that is in s
ope at the moment, and the CAregister refers to the start address of the 
urrent ant, on the 
urrent team. The CTM and CAM areused for referring to the ant-memory lo
ations of the 
urrent team and the 
urrent ant. The e�e
t is thatyou always know whi
h ant is 
urrently being exe
uted, and whi
h team it belongs to, and therefore youknow what part of the memory should be in s
ope. The LS register refers to the value of lo
al s
ope,and keeps tra
k of what s
ope we are 
urrently in, and the CM is used to keep tra
k of the 
ommonmemory. The PC register is used to refer to the 
urrent instru
tion on the 
ode store. It is though, notused as one might expe
t. As su
h the a
tual exe
ution of 
ode is 
ontrolled with the 
ode sta
k, andthe program 
ounter is used to keep tra
k of what is 
urrently on the 
ode sta
k. The lo
ation of theseregisters at the start of the program is illustrated in �gure 4.1The 
ode store will 
ontain the program, whi
h is going to be exe
uted, expressed in abstra
t ma
hine
ode. The data store 
ontains all the data whi
h is stored during the program's life 
y
le. When we refer49



4.1. DEFINITION OF AWLAM CHAPTER 4. AWLAMto lo
ations in the stores, we will do so relatively from the start of the store. It means that the �rst lineof a store will be addressed �0�, and the line after �1�. The same thing holds for the registers.The evaluation sta
k is used for 
al
ulations during the exe
ution of a program, and 
an 
ontain integers,booleans and dire
tions. The 
ode sta
k will 
ontain the 
ode whi
h is going to be exe
uted next. Atthe start of a program it will be a 
opy of the 
ode store, but as the program exe
utes, instru
tions willbe popped from the sta
k. If at some point in the 
ode a jump is made to another part of the 
ode, the
ontent of the sta
k will be popped. The 
ode at the pla
e to where we jumped, and through to the endof the program, will be pushed onto the sta
k. Again instru
tions will be popped from the sta
k as theyare exe
uted. This will 
ontinue until the program terminates or another jump is rea
hed.As su
h, the 
ode sta
k might not be the best solution to 
ontrol exe
ution of 
ode, and may be seen asan abstra
tion. It would be more reasonable to implement a �program 
ounter� register, and use it topoint at the next instru
tion to be exe
uted from the 
ode store. The pros and 
ons for using a program
ounter is that it boosts exe
ution speed and e�
ien
y, but adds to the 
omplexity of the ma
hine. Thereis only a minor di�eren
e in the behavior between using a register solution and using the sta
k solution.As implied earlier we will use the register solution.For the sake of simpli
ity we will assume that all variables and instru
tions use one memory lo
ation ea
hin the memory of the AM. The theory and notation in this 
hapter is based on the book 1.Figure 4.1 shows how the memory is organized, and where the registers are pointing at the start of aprogram. The layout is the same as that of AWL, the only di�eren
e being that in AWLAM we haveregisters.4.1.1 Notation and De�nitionsBefore we go on, it might be a good idea to introdu
e some de�nitions, and to say a little about thenotation used in the next se
tion. Con�gurations of the AM are on the form:hr ; 
; e; mi 2 Reg�Code� Sta
k �Memoryr is the fun
tion mapping registers to numbers de�ned by:r 2 Reg = Register ,! Zand the set of registers is:g 2 Register = fPC ; CT ; CTM ; CA; CAM ; ST ; SD ; NEXT ; LSg
ode is the sequen
e of 
ode to be exe
uted and 
onsists of
ode 2 Codea set of AM instru
tions, whi
h is de�ned by the abstra
t syntax in table 4.1. k is the number of totalinstru
tions in the 
ode. The 
ode sta
k is de�ned by:
 2 
Sta
k = (
ode)and e is the evaluation sta
k de�ned by:1[2, 
hapter 3℄ 50



CHAPTER 4. AWLAM 4.1. DEFINITION OF AWLAM
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4.1. DEFINITION OF AWLAM CHAPTER 4. AWLAMe 2 eSta
k = (Z[Bool [Dir)�where b 2 Bool = ftt ; ff g and d 2 Dir = fll ; rr ; uu; dd ; 

g.m is the memory formally de�ned by:m 2Memory = (Z[Bool [Dir)�.The transition relation for AWLAM is on the form:hr ; 
; e; mi . hr 0; 
0; e 0; m 0iwhere the triangle spe
i�es the transition itself, and means that it is done in one step. Finally z 2 Z.When we write hr ;ADD : TRUE : 
; z1 : z2 : e;mi, it means that the instru
tions on the 
ode sta
k isthe ADD 
ommand, and that the one 
oming right after is the TRUE 
ommand, i.e. when the ADD
ommand has been exe
uted, the next instru
tion on the sta
k will be TRUE. The 
 means that theremight be more 
ode on sta
k, but we will only spe
ify the 
ode that we need at this 
ertain time.When there is a 
olon between two elements it serves as a separator. In the example mentioned beforetwo elements are on the sta
k, namely z1 and z2 whi
h are used as operands for the ADD 
ommand.Furthermore, we shall use the notation r(g) to denote the value of register g. When we refer to it in
onne
tion with the evaluation sta
k, we will use the register name to mean the a
tual value of theregister. E.g. when we write next : e we a
tually mean r(next) : e.With these de�nitions, we are ready to take a look at the operational semanti
s.4.1.2 Instru
tion Set of AWLAMThe instru
tion set of AWLAM is seen in table 4.1. It is expressed in BNF and tells us that 
ode 
an beeither a single instru
tion, a sequen
e of instru
tions, or no instru
tion at all.
ode ::= � j inst : 
odeinst ::= ADD j SUB jMULT jDIV jPUSH n jPOP jTRUE jFALSEj LEFT jRIGHT jUP jDOWN jCENTER j EQ j LE jNEGj AND jOR j JUMP n j JUMPF n j LOADS [g ℄ j LOAD n [g ℄j SAVES [g ℄ j SAVE n [g ℄ j LABEL n jNEXTj CALL n1 ;n2 jCALLAT n jRETURN j SAVEREG gj NOOP j SWAP jRAN jDUPTable 4.1: Abstra
t syntax for AWLAMThe instru
tions themselves will be explained in the next se
tion, where we also explain the operationalsemanti
s for AWLAM. 52



CHAPTER 4. AWLAM 4.2. OPERATIONAL SEMANTICS OF AWLAM4.2 Operational Semanti
s of AWLAMIn table 4.2 through 4.8 we show the operational semanti
s for AWLAM. We will start out by explainingthe arithmeti
 rules in table 4.2.[ADD-AM℄hr ;ADD : 
; z1 : z2 : e; stoi . hr ; 
; (z1 + z2 ) : e; stoi[SUB-AM℄hr ;SUB : 
; z1 : z2 : e; stoi . hr ; 
; (z � z2 ) : e; stoi[MULT-AM℄hr ;MULT : 
; z1 : z2 : e; stoi . hr ; 
; (z1 � z2 ) : e; stoi[DIV-AM℄hr ;DIV : 
; z1 : z2 : e; stoi . Dr ; 
; (Z1Z2 ) : e; stoETable 4.2: Transition rules for arithmeti
 instru
tions.The top of the 
ode sta
k 
ontains the ADD 
ommand, and two values z1 and z2 are found on the topof the evaluation sta
k. After the instru
tion has been exe
uted the sum of z1 and z2will lie on top ofthe sta
k. The notation says that (z1 + z2) is on the evaluation sta
k whi
h should be read as the a
tualresult of this operation. The rest of the arithmeti
 operations work in a similar way. In the table 4.3 wesee the instru
tions for pushing and popping a value to the evaluation sta
k.[PUSH n-AM℄hr ;PUSH n : 
; e; stoi . hr ; 
;N [[n℄℄ : e; stoi[POP-AM℄hr ;POP : 
; v : e; stoi . hr ; 
; e; stoi[TRUE-AM℄hr ;TRUE : 
; e; stoi . hr ; 
; tt : e; stoi[FALSE-AM℄hr;FALSE : 
; e; stoi . hr; 
; ff : e; stoi[LEFT-AM℄hr ;LEFT : 
; e; stoi . hr ; 
; ll : e; stoi[RIGHT-AM℄hr ;RIGHT : 
; e; stoi . hr ; 
; rr : e; stoi[UP-AM℄hr ;UP : 
; e; stoi . hr ; 
; uu : e; stoi[DOWN-AM℄hr ;DOWN : 
; e; stoi . hr ; 
; dd : e; stoi[CENTER-AM℄hr ;CENTER : 
; e; stoi . hr ; 
; 

 : e; stoiTable 4.3: Instru
tions for pushing values onto the sta
k.53



4.2. OPERATIONAL SEMANTICS OF AWLAM CHAPTER 4. AWLAMThe �rst instru
tion PUSHn pushes a numeral n onto the sta
k, or a
tually it is the value of the numeraln denoted by N [[n℄℄ that is pushed. POP works in the opposite way, whi
h means that it removes a valuefrom the evaluation sta
k. The rest works in a way similar to PUSH n, ex
ept that they push the valueof the instru
tion name, whi
h means a tt for TRUE, ff for FALSE, ll for LEFT, et
. The table 4.4shows instru
tions for boolean 
al
ulations.
[EQ1-AM℄hr ;EQ : 
; z1 : z2 : e; stoi . hr ; 
; (z1 = z2 ) : e; stoi[EQ2-AM℄hr ;EQ : 
; b1 : b2 : e; stoi . hr ; 
; (b1 = b2 ) : e; stoi[EQ3-AM℄hr ;EQ : 
; d1 : d2 : e; stoi . hr ; 
; (d1 = d2 ) : e; stoi[LE-AM℄hr ;LE : 
; z1 : z2 : e; stoi . hr ; 
; (z1 � z2 ) : e; stoi[NEG-AM℄hr ;NEG : 
; b : e; stoi . hr ; 
;:b : e; stoi[AND-AM℄hr ;AND : 
; b1 : b2 : e; stoi . hr ; 
; (b1 ^ b2 ) : e; stoi[OR-AM℄hr ;OR : 
; b1 : b2 : e; stoi . hr ; 
; (b1 _ b2 ) : e; stoiTable 4.4: Instru
tions for boolean operations.

The EQ instru
tions will pop two operands from the sta
k, and evaluate whether they are equal or not,and then push the boolean result onto the sta
k. The reason that there are three di�erent rules is thatwe have three simple types, namely arithmeti
, boolean and dire
tion. The three are, ex
ept for theirtype, the alike. The LE instru
tion works in the same way as EQ, with the only di�eren
e that it is the�less than or equal� operation. The NEG (boolean not) gives the opposite value of a boolean value onthe evaluation sta
k, pops the original value and pushes the new value.AND and OR both works the same way. With two boolean values pla
ed on the sta
k, they pop thetwo values, and use the boolean operator on them. They then push the result ba
k onto the evaluationsta
k. The result depends on the values on the evaluation sta
k, and is 
al
ulated using normal booleanalgebra rules. The part in table 4.5 is the instru
tions used for jumping to some spe
i�
 part of the 
ode.In the table k is the length of det total 
ode. 54



CHAPTER 4. AWLAM 4.2. OPERATIONAL SEMANTICS OF AWLAM[JUMP n-AM℄< r ;JUMP n : 
; e; sto > . where z = label (N [[n℄℄)< r [PC 7! z ℄; 
ode[z ℄ : 
ode[z + 1 ℄; :::; 
ode[k ℄; e; sto >[JUMPF1-AM℄< r ;JUMPF n : 
; b : e; sto > . if b = ff and< r [PC 7! z ℄; 
ode[z ℄ : 
ode[z + 1 ℄; :::; 
ode[k ℄; e; sto > where z = label (N [[n℄℄)[JUMPF2-AM℄< r ;JUMPF n : 
; b : e; sto > . < r ; 
; e; sto > if b = tt[LABEL-AM℄< r ;LABEL n : 
; e; sto > . < r ; 
; e; sto >Table 4.5: Instru
tions for jumping in the 
ode.JUMPn is used to jump to a spe
i�
 label in the 
ode. What happens when a jump is made, is that all
ode on the 
ode sta
k will be popped, and the 
ode from the pla
e to where we jumped, through to theend of the program, will be pushed onto the sta
k. JUMPF n does the same thing, ex
ept that it popsa boolean value from the sta
k �rst and evaluates it. If it evaluates to false, the same thing will happenas for the JUMPn, and if it evaluates to true the instru
tion just after the JUMPFn will be exe
uted.The LABEL instru
tion is just to spe
ify a label in the 
ode, and if one is en
ountered, the instru
tionafter the label will be exe
uted next. The instru
tions in table 4.6 are used for a

essing the registers.[LOADS [g℄-AM℄hr ;LOADS [g ℄ : 
; z1 : e; stoi . hr ; 
; z2 : e; stoi where z2 = m[r(g) + z1℄[SAVES [g℄-AM℄hr ;SAVES [g ℄ : 
; z : v : e; stoi . hr ; 
; e; sto [z 7! v ℄i where z = m[r(g) + z℄[LOAD n [g℄-AM℄hr ;LOAD n [g ℄ : 
; e; stoi . hr ; 
; v : e; stoi where v = m[r (g) +N [[n℄℄℄[SAVE n [g℄-AM℄hr ;SAVE n [g ℄ : 
; v : e; stoi . hr ; 
; e; sto [z 7! v ℄i where z = r (g) +N [[n℄℄[SAVEREG [g℄-AM℄hr ;SAVEREG [g ℄ : 
; z : e; stoi . hr [g 7! z ℄ ; 
; e; stoi[NEXT-AM℄hr ;NEXT : 
; e; stoi . hr [NEXT 7! NEXT + 1 ℄; 
; e; stoiTable 4.6: Instru
tions for loading and saving values to registers.LOADS [g℄ is used for loading a value from a memory lo
ation. The memory lo
ation is popped fromthe evaluation sta
k, and afterwards the retrieved value is pushed onto the evaluation sta
k. SAVES [g℄is used for saving the se
ond value lying on the evaluation sta
k to the memory lo
ation lying on top ofthe sta
k. LOAD n [g℄ is used for loading a memory lo
ation n whi
h is relative to a register address gand then pushing it on top of the evaluation sta
k. So if n = 3, then it is the 3rd memory lo
ation afterregister g's memory lo
ation. SAVE n [g℄ works in a similar way, only di�eren
e is that it pops a value55



4.2. OPERATIONAL SEMANTICS OF AWLAM CHAPTER 4. AWLAMfrom the sta
k and saves it to a memory lo
ation n relative to the register g. The NEXT instru
tion isused for in
reasing the memory lo
ation, to whi
h the register NEXT points, by one. SAVEREG [g℄has the register g point at the lo
ation value that is on top of the sta
k[CALL-AM℄hr ;CALL n1 ;n2 : 
; v1 ; : : : ; vn2 : e; stoi .hr [LS 7! NEXT + 1 ℄;JUMP n1 : 
; v1 ; : : : ; vn2 : PC + 1 : NEXT : LS : e; stoiwhere n = label (N [[n1℄℄)[CALLAT-AM℄hr ;CALLAT n : 
; e; stoi .hr [LS 7! NEXT ℄[CT 7! z3 ℄[CTM 7! z4 ℄[CA 7! z5 ℄[CAM 7! z6 ℄;JUMP n : 
;PC + 1 : NEXT : LS : e; stoiwherez1 = sto (4) (
urrent team) , z2 = sto (5) (
urrent ant)z3 = ST + z1 � (4 + sto(7) + (2 + sto(8)) � sto(1)) (base address of 
urrent team)z4 = z3 + 4 (base address of 
urrent team memory)z5 = z4 + sto(7) + (2 + sto(8)) � z2 (base address of 
urrent ant)z6 = z5 + 2 (base address of 
urrent ant private memory)[RETURN-AM℄hr ;RETURN : 
; z1 : z2 : z3 : e; stoi .hr [PC 7! z1 ℄[NEXT 7! z2 ℄[LS 7! z3 ℄; 
ode[z1 ℄ : 
ode[z1 + 1 ℄; :::; 
ode[k ℄; e; stoiTable 4.7: Instru
tions 
alling 
ode, and returning values.CALL n1; n2 is used for 
alling a spe
i�
 label in the 
ode. It takes two parameters, n1 and n2. The�rst parameter is the label that you want to jump to, and the se
ond one is the number of argumentsyou have on the sta
k. The reason you spe
ify this in the 
all, is that it allows you to know the exa
tnumber of parameters on the sta
k. It works as follows: You have n2, (whi
h is v1to vn) arguments onthe sta
k, and then use the CALL n1; n2 instru
tion. The result of this is that the LS register is set topoint at the next free memory lo
ation, the PC register is set to point to PC + 1 and a JUMP n1 ispla
ed on the 
ode sta
k. The PC register, the old values of register LS, and register NEXT are pushedonto the evaluation sta
k so that after the subroutine 
all has �nished, it is possible to return to the statethat existed before we entered the subroutine 
all. The PC register is saved so we know what is the nextinstru
tion after we return from the subroutine. The LS register is saved so we will know what s
ope wewere in before, and the NEXT register is saved so we will know what was the next free memory lo
ationbefore the 
all. This has the e�e
t that we a
tually will overwrite all lo
al s
ope data from the subroutineafter it has �nished, whi
h makes perfe
tly sense, sin
e we do not want to save it. The return addressis saved so we know whi
h instru
tion is the next to be exe
uted right after the subroutine returns, i.ewhat 
ode to put on the 
ode sta
k. One thing to noti
e is that the sta
k has been rearranged so thatthe arguments for the subroutine is now on top of the sta
k.The CALLAT n instru
tion is a bit more 
ompli
ated sin
e it updates a lot more registers. It takes oneparameter, whi
h is the number of the anttype that should be 
alled. It uses two values from storage,the 
urrent team number and the 
urrent ant number, whi
h are used for updating registers. It updatesNEXT , CT , CTM , CA and the CAM register, so that the right ant will be edited inside the ant type.56



CHAPTER 4. AWLAM 4.3. PROGRAM EXAMPLEIt pushes the same values on both the evaluation sta
k and the 
ode sta
k as the CALLn1; n2instru
tion,so that it will know where to return to.RETURN goes ba
k to the state before a 
all was made. Is has the value of the return address (PC)together with the original NEXT and LS registers on the evaluation sta
k, (z1;z2and z3). After thereturn the NEXT and LS registers will point at the values at whi
h they did before. If there is anyreturn value (v) it will be pla
ed in the lo
ation 0 relative to register LS. Also the 
ode sta
k will bepopped for all 
ode, and the 
ode from the return address (PC), lying on the evaluation sta
k, and on,will be pushed on the 
ode sta
k.[NOOP-AM℄hr ;NOOP : 
; e; stoi . hr ; 
; e; stoi[SWAP-AM℄hr ;SWAP : 
; v1 : v2 : e; stoi . hr ; 
; v2 : v1 : e; stoi[RAN-AM℄hr ;RAN : 
; z1 : e; stoi . hr ; 
; z2 : e; stoi where 0 � z2 < z1[DUP-AM℄hr ;DUP : 
; v : e; stoi . hr ; 
; v : v : e; stoiTable 4.8: Various instru
tionsThe NOOP 
ommand does nothing. It is an abbreviation for �No Operation�. SWAP takes two valuesfrom the top of the sta
k, and swaps them so that the one on top will be swit
hed with the one lyingright after it. RAN returns a value between 0 and z1 � 1, where z1 lies on top of the evaluation sta
k,and pushes it onto the sta
k. The DUP instru
tion takes a value from the sta
k and pushes it ba
k tothe sta
k twi
e.4.3 Program ExampleTable 4.9 shows a small AWLAM program.1. PUSH 1 5. EQ 9. SUB2. LABEL n1 6. NEG 10. JUMP n13. DUP 7. JUMPF n2 11. LABEL n24. PUSH 0 8. PUSH 1 12. POPWhere n1 = newLabeln1 and n2 = newLabeln2Table 4.9: Example AWLAM instru
tion sequen
e.In the AWLAM program in table 4.9, the value 1 is pushed onto the sta
k. This value is then dupli
atedso that we have 2 of the same value in the two top pla
es of the sta
k. 0 is then pushed on top of thesta
k. We now pro
eeds to 
ompare the two top values of the sta
k(0 and 1), the truth value of this ispushed on top of the sta
k. We then pop this value, negate it, and push the new truth value. After thisif the value is ff the program jumps to the label n2. Be
ause the value is tt the program simply 
ontinuesto the next instru
tion. Now 1 is pushed on top of the sta
k, and then pop the two topmost values o�57



4.4. SUMMARY CHAPTER 4. AWLAMthe sta
k, subtra
ts the �rst value from the se
ond value, and push this new value onto the sta
k. Theprogram now en
ounters JUMP n1. This means that the next instru
tion is the one dire
tly followingLABELn1whi
h is DUP. The program now goes through the above des
ribed phases until JUMPFn2is en
ountered. Be
ause the value on top of the sta
k is ff , the program now jumps to the instru
tiondire
tly following LABEL n2. This instru
tion is POP whi
h as the name implies pops the topmostvalue of the sta
k. After this there are no more instru
tions and the program is 
ompleteTo illustrate how the transitions of AWLAM progress, we will make a 
omputation sequen
e of oursmall example. Initially all the program 
ode is on the 
ode sta
k, and the 
omputation starts with anempty evaluation sta
k. Sin
e it would take up to mu
h spa
e to write the entire 
ode sta
k at ea
h
on�guration, we just write inst : 
 to illustrate, that after the topmost instru
tion the rest of the sta
kfollows. Also ea
h instru
tion is pre�xed with it's line number to make the 
omputation sequen
e moreunderstandable. Registers Code sta
k Evaluation sta
k Storagehr; 1:PUSH 2 : 
; �; stoi. hr; 2: LABEL n1 : 
; 1; stoi. hr; 3:DUP : 
; 1; stoi. hr; 4:PUSH 0 : 
; 1 : 1; stoi. hr; 5:EQ : 
; 0 : 1 : 1; stoi. hr; 6:NEG : 
; ff : 1; stoi. hr; 7: JUMPF n2 : 
; tt : 1; stoi. hr; 8:PUSH 1 : 
; 1; stoi. hr; 9: SUB : 
; 1 : 1; stoi. hr; 10: JUMP n1 : 
; 0; stoi. hr; 3:DUP : 
; 0; stoi. hr; 4:PUSH 0 : 
; 0 : 0; stoi. hr; 5:EQ : 
; 0 : 0 : 0; stoi. hr; 6:NEG : 
; tt : 0; stoi. hr; 7: JUMPF n2 : 
; ff : 0; stoi. hr; 12:POP : 
; 0; stoi. hr; �; �; stoiTable 4.10: Computation sequen
e of the program in table 4.9The 
omputation in table 4.10 is an example of a terminating 
omputation, be
ause it is obviouslynot possible to make any transitions from the �nal 
on�guration, sin
e there are no more instru
tions.Furthermore the 
omputation sequen
e ends in a terminal 
on�guration, whi
h means that the 
ode
omponent is empty.If we appended the instru
tion ADD to the sequen
e, then the sequen
e would still terminate, but itwould end in a stu
k 
on�guration, sin
e ADD needs two numbers on the sta
k to make a transition. In
ontrast to a terminating 
omputation is a 
omputation whi
h does not terminate. Su
h a 
omputationis 
alled a looping 
omputation sequen
e. We will need these 
on
epts when proving the 
orre
tness ofthe translation from AWL to AWLAM, so we will make a formal de�nition.4.4 SummaryIn this 
hapter we have given a de�nition of the AM. A 
entral question when designing an AM is at whatlevel should it be. Should it be as low level as possible, or should it be allowed to put in some abstra
tme
hanisms, whi
h will make it more high level. We have tried to keep the AM as low level as possiblebut have in
luded a few me
hanisms of abstra
tion. A 
entral me
hanism that we have added is relativeaddressing. We refer to memory lo
ations relatively from registers whi
h makes it a lot easier to workwith the AM. Also we use a 
ode sta
k to 
y
le through the 
ode, and a program 
ounter when exe
uting58



CHAPTER 4. AWLAM 4.4. SUMMARYa jump. Using a 
ode sta
k is not the most e�
ient way to design an AM, but it gives a model whi
his easier to illustrate, and the di�eren
e from making a 
ode sta
k versus for example using a program
ounter register only, is not really that big. The main issue here is that the AM de�ned at �rst may notbe the �nal AM. As su
h it is possible to master the 
omplexity in a number of steps, whatever seemsreasonable, and the AM de�ned here should be seen as an intermediate result, and not as a representationof how the AM will a
tually be implemented.Another 
entral 
on
ept is how the instru
tion set is laid out. How many instru
tions should there be.Should there be any 
omposite instru
tions or helping fun
tions to ease the job of translating. We dohave some me
hanism helping us, but have tried to limit these.Sin
e all evaluation is done on a sta
k, it may be seen as a sta
k ma
hine. But we also do use registersto refer memory lo
ations in an easier way, and to keep tra
k of 
ertain values and s
ope.With the de�nition of AWL and the de�nition of the abstra
t ma
hine, we are now ready to see how thetranslation of AWL 
ode into AM instru
tions is done. This is the topi
 of the next 
hapter.
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Chapter 5Code GenerationIn this 
hapter we will de�ne translation fun
tions whi
h translates AWL to AWLAM. The translationfun
tions are divided into 
ategories, whi
h are explained as they appear. To 
reate a proper translation,it has been ne
essary to make proto
ols des
ribing how e.g. a pro
edure is 
alled. It should also be notedthat the translation has not been optimized for performan
e in any way.5.1 Proto
olsIn this se
tion we will in general terms des
ribe what happens when a pro
edure 
all and a 
all to an anttype is en
ountered.When a pro
edure 
all is en
ountered the following happens.Pro
edure Call1. Pla
e the value of [NEXT ℄on top of the sta
k2. Pla
e the value of[LS℄ on top of the sta
k.3. Pla
e the return address on top of the sta
k4. The value of [LS℄ is set to the value of [NEXT ℄.5. Pla
e the arguments value on the sta
k.6. Give the 
ontrol to the pro
edure.Inside the Pro
edure1. Save the arguments on top of the sta
k.2. perform any de
larations and 
ommands found in the body of the pro
edure.3. Pla
e the return value if any in the base of [LS℄ (0[LS℄)4. Pop the return address from the sta
k and jump to this.After Exiting the Pro
edure1. Pop the topmost value of the sta
k, and set [LS℄ to this value.60



CHAPTER 5. CODE GENERATION 5.2. FUNCTIONS2. Pop the topmost value of the sta
k, and set [NEXT ℄ to this value.3. If there is a return value, this is found at the base of [NEXT ℄ (0[NEXT ℄)Before entering a pro
edure the old state of the program is saved along with where we want the thereturn value to be, if any. The pro
edure then enters the pro
edure. After de
laring the variables found,and exe
uting the 
ommands that is inside the pro
edure body, the return address is saved in the base of[LS℄, and the return value is popped from the sta
k, and then jumps to this lo
ation. When the programhas left the pro
edure, [NEXT ℄ and [LS℄ is restored to its old values.When a 
all to an ant type is en
ountered the following happensCall an Ant Type1. Update CT to point to the address spa
e asso
iated with the 
urrent team.2. Update CA to point to the address spa
e asso
iated with the 
urrent ant.3. Pla
e the value of [NEXT ℄on top of the sta
k4. Pla
e the value of[LS℄ on top of the sta
k.5. Pla
e the return address on the sta
k6. Jump to the ant type 
odeInside Ant Type1. Save the return address from the top of the sta
k.2. Exe
ute the de
larations and 
ommands found within the ant type body. Team mem is loadedrelative to CT, and ant mem is loaded relatively to CA.3. Pop the return address from the sta
k and jump to this.After Exiting the Ant Type1. Pop the topmost value of the sta
k, and set [LS℄ to this value.2. Pop the topmost value of the sta
k, and set [NEXT ℄ to this value.Before entering an ant type, the old state of the program is saved The ant type 
all then enters the anttype instru
tions. After exe
uting the instru
tions, the return value is saved in the base of [LS℄, and thereturn address is popped from the sta
k, and then jumps to this lo
ation. When the program has leftthe pro
edure, [NEXT ℄ and [LS℄ is restored to its old values.5.2 Fun
tionsSin
e we do not have variables in AWLAM we need a method to remember whi
h storage lo
ation agiven variable is bound to. We therefore de�ne the fun
tion mlo
.mlo
 : Pro
Name�Var ,! Z61



5.3. CODE GENERATION CHAPTER 5. CODE GENERATIONwhere the set Pro
Name is de�ned as Pro
Name = RuleName [ TurnName [ AntTypeName.We will use the meta variable p to referen
e elements in Pro
Name.We do not have pro
edures either, so we need a way to remember whi
h label prepends the translationof a given pro
edure. For that purpose we de�ne plo
. Note that labels are in fa
t just natural numbers.plo
 : Pro
Name ,! ZFinally we de�ne the fun
tion tlo
 whi
h maps team variable names to the �rst storage lo
ation allo
atedto the given team. tlo
 : Var ,! Lo
Updating the Fun
tionsInstead of updating the fun
tions with the 
orre
t values during the a
tual translation, we will spe
ifyhow they 
an be updated before this pro
ess. Doing that will allow us to assume that they are de�ned
orre
tly during the translation. Figure 5.1 shows the general idea on how to update mlo
 and plo
.During translation we run through the AWL sour
e program. This run-through will be done on
e beforethe a
tual translation only to map variables, pro
edures and teams to 
ertain values. We 
an map ea
hvariable to a relative storage lo
ation inside a pro
edure, and we 
an map ea
h pro
edure to the numberit was de
lared as.When we en
ounter a team de
laration, it is a simple task of 
al
ulating the �rst storage lo
ation thatwill be allo
ated to that team. Similar 
al
ulations are des
ribed in the operational semanti
s of AWL.We 
an then update tlo
 with the 
orre
t lo
ation.5.3 Code GenerationIn this se
tion we will de�ne the translation fun
tions.5.3.1 Arithmeti
 ExpressionsFor the arithmeti
 expressions we have the total fun
tion:CA : AExpr! (Pro
Name ,! Code)whi
h states that given a arithmeti
 expression and a pro
edure name, we will get translated 
ode. Weneed the pro
edure name, so we 
an determine the relative storage lo
ations of variables.In the 
ode generation for the arithmeti
 operations, we have swapped the arguments, so that they willbe evaluated in the 
orre
t order. We use mlo
 to evaluate a variable x as the 
ontents of the storagelo
ation mlo
(p; x) relatively to the lo
al s
ope base LS inside the given pro
edure p . Evaluating avariable means pushing it onto the evaluation sta
k.When 
alling a pro
edure we �rst evaluate the a
tual parameters, using the 
ode translation fun
tionCPA [[PA℄℄ de�ned in se
tion 5.3.12. We then insert a CALL instru
tion, whi
h jumps to the labelmapped in plo
 for the given pro
edure name. A

ording to the de�ned proto
ols, we 
an now fet
h thereturn value from storage lo
ation 0 relatively to the register NEXT.The instru
tions 
mem, tmem and pmem loads the 
ontents of their mapped storage lo
ation relativelyto their base registers CM, CTM and CAM onto the sta
k.62



CHAPTER 5. CODE GENERATION 5.3. CODE GENERATION

world(300,20,50)

{

      common var rLeft: integer=5;

      team var t1:integer;

      private p1[4]:integer;


}


rule r(..){


     var rx : integer = 0;

     array rz[4]: integer = 0;

     var ry : integer = 0;

}


turn t(..){


     var sx : integer = 30;

     var sy : integer = 0;

}


anttype at{


     var atx : integer = 0;

}


main{


     var mx : integer = 0;

}


mloc(r, rx) = 0

mloc(r, rz) = 1

mloc(r, ry) = 5


mloc(t, sx) = 0

mloc(t, sy) = 1


mloc(at, atx) = 0


mloc(main, mx) = 0


ploc(main) = 3


ploc(at) = 2


ploc(t) = 1


ploc(r) = 0


mloc(memory, p1) = 2

mloc(memory, t1) = 1

mloc(memory, rLeft) = 0


Figure 5.1: De�nition of mlo
, plo
 and tlo
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5.3. CODE GENERATION CHAPTER 5. CODE GENERATIONCA [[n℄℄ p = PUSH nCA [[x℄℄ p = LOAD n [LS℄ where n = mlo
 (p; x)CA [[x [ae℄℄℄ p = CA [[ae℄℄ : PUSH n : ADD : LOADS [LS℄ where n = mlo
 (p; x)CA [[ae1+ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : ADDCA [[ae1�ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : SUBCA [[ae1�ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ :MULTCA [[ae1=ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : DIVCA [[(ae)℄℄ p = CA [[ae℄℄CA [[r (PA)℄℄ p = CPA [[PA℄℄ : CALL n1; n2 : LOAD 0 [NEXT ℄ where n1 = plo
(p) andn2 = parameter 
ountCA [[random(ae)℄℄ p CA [[ae℄℄ : RANCA [[
mem x; ℄℄ p = LOAD n [CM ℄ where n = mlo
 (memory; x)CA [[tmem x; ℄℄ p = LOAD n [CTM ℄ where n = mlo
 (memory; x)CA [[pmem x; ℄℄ p = LOAD n [CAM ℄ where n = mlo
 (memory; x)CA [[getProperty(ae);℄℄ p = CA [[ae℄℄ : LOADS [SD℄Table 5.1: Translation of AExp
5.3.2 Boolean Expressions
For boolean expressions we have the total fun
tion:

CB : BExpr! (Pro
Name ,! Code)
The translation of boolean expressions are very similar to the translation of arithmeti
 expression. Sin
ewe only have instru
tions for the relational operations �less than or equals� (LE) and �equals� (EQ), weuse a 
ombination of these and NEG to implement the other relational operations. Table 5.2 illustratesthe translation of boolean expression. 64



CHAPTER 5. CODE GENERATION 5.3. CODE GENERATIONCB [[true℄℄ p = TRUECB [[false℄℄ p = FALSECB [[x℄℄ p = LOAD n [NEXT ℄ where n = mlo
 (p; x)CB [[x [ae℄ ; ℄℄ p = CA [[ae℄℄ : PUSH n : ADD : LOADS [LS℄ where n = mlo
 (p; x)CB [[ae1 == ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : EQCB [[be1 == be2℄℄ p = CB [[be2℄℄ : CB [[be1℄℄ : EQCB [[de1 == de2℄℄ p = CD [[de2℄℄ : CD [[de1℄℄ : EQCB [[ae1! = ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : EQ : NEGCB [[be1! = be2℄℄ p = CB [[be2℄℄ : CB [[be1℄℄ : EQ : NEGCB [[de1! = de2℄℄ p = CD [[de2℄℄ : CD [[de1℄℄ : EQ : NEGCB [[ae1>ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : LE : NEGCB [[ae1<ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : EQ : NEG :CA [[ae2℄℄ : CA [[ae1℄℄ : LE : ANDCB [[ae1>=ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : EQCA [[ae2℄℄ : CA [[ae1℄℄ : LE : NEG : ANDCB [[ae1 <= ae2℄℄ p = CA [[ae2℄℄ : CA [[ae1℄℄ : LECB [[be1and be2℄℄ p = CB [[be2℄℄ : CB [[be1℄℄ : ANDCB [[be1or be2℄℄ p = CB [[be2℄℄ : CB [[be1℄℄ : ORCB [[(be)℄℄ p = CB [[be℄℄CB [[!be℄℄ p = CB [[be℄℄ : NEGCB [[r (PA)℄℄ p = CPA [[PA℄℄ : CALL n1; n2 : LOAD 0 [NEXT ℄ where n1 = plo
(p) , andn2 = parameter 
ountCB [[
mem x℄℄ p = LOAD n [CM ℄ where n = mlo
 (memory; x)CB [[tmem x℄℄ p = LOAD n [CTM ℄ where n = mlo
 (memory; x)CB [[pmem x℄℄ p = LOAD n [CAM ℄ where n = mlo
 (memory; x)CB [[getProperty(ae)℄℄ p = CA [[ae℄℄ : LOADS [SD℄Table 5.2: Translation of BExp
5.3.3 Dire
tion ExpressionsFor the dire
tion expressions we have the total fun
tion:

CD : DExpr! (Pro
Name ,! Code)
The translation of dire
tion expressions is similar to the translation of arithmeti
 and boolean expressions,and will stand un
ommented. The translation is shown in table 5.3.65



5.3. CODE GENERATION CHAPTER 5. CODE GENERATIONCDV [[var x : type = exp;DV ℄℄ p = CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄CDV [[�℄℄ p = NOOPTable 5.4: Translation of De
VarCD [[
enter℄℄ p = CENTERCD [[up℄℄ p = UPCD [[down℄℄ p = DOWNCD [[right℄℄ p = RIGHTCD [[left℄℄ p = LEFTCD [[x℄℄ ; p = LOAD n [LS℄ where n = mlo
 (p; x)CD [[(de)℄℄ p = CD [[de℄℄CD [[r (PA)℄℄ ; p = CPA [[PA℄℄ : CALL n1; n2 : LOAD 0 [NEXT ℄ where n1 = plo
(p) , andn2 = parameter 
ountCD [[
mem x; ℄℄ p = LOAD n [CM ℄ where n = mlo
 (memory; x)CD [[tmem x; ℄℄ p = LOAD n [CTM ℄ where n = mlo
 (memory; x)CD [[pmem x; ℄℄ p = LOAD n [CAM ℄ where n = mlo
 (memory; x)CD [[x [ae℄ ; ℄℄ ; p = CA [[ae℄℄ : PUSH n : ADD : LOADS [LS℄ where n = mlo
 (p; x)CD [[getProperty(ae);℄℄ p = CA [[ae℄℄ : LOADS [SD℄Table 5.3: Translation of DExp5.3.4 Variable De
larationsTo translate variable de
larations we de�ne two fun
tionCDV : De
Var! (Pro
Name ,! Code)As with the semanti
 rules of a variable de
laration, the 
ode translation is re
ursive. Sin
e we alreadyhave the mapping of ea
h variables relative storage lo
ation, we only need to save the value of the variablein the next free storage lo
ation, and then update the NEXT register to point at the next free lo
ation.Table 5.4 de�nes the fun
tion CDV .5.3.5 Array De
larationsThe translation fun
tion for array de
larations is spe
i�ed asCDA : De
Arr! (Pro
Name ,! Code)and de�ned in table 5.5 . The translated instru
tions 
reate a looping instru
tion sequen
e, whi
h walksthrough the storage lo
ations of the array, and assigns the given value. CDA is de�ned re
ursively.5.3.6 Ant Type De
larationsWe translate ant type de
larations using the fun
tion66



CHAPTER 5. CODE GENERATION 5.3. CODE GENERATIONCDA [[array x [n℄ : type = exp;DA℄℄ p = PUSH n : LABEL n1 : DUP : PUSH 0 : EQ : NEG : JUMPF n2 :CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : PUSH 1 : SWAP :SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄where n1 = newlabel1 and n2 = newlabel2CDA [[�℄℄ p = NOOPTable 5.5: Translation of De
ArrCDAT [[anttype at fDV DASgDAT ℄℄ p = JUMP n2 : LABEL n1 : CDV [[DV ℄℄ : CDA [[DA℄℄ :CS [[S℄℄ : RETURN : LABEL n2where n1 = newlabel1 , n2 = newlabel2and plo
(p) = n1CDAT [[�℄℄ p = NOOPTable 5.6: Translation of De
ATCDAT : De
AT ! (Pro
Name ,! Code)de�ned in table 5.6. We see that the �rst instru
tion in the translated sequen
e is a JUMP instru
tion,whi
h jumps to the end of the sequen
e. This ensures that the de
larations and 
ommands inside the anttype is not 
omputed during the de
laration of the ant type. CDAT uses the 
ode translation fun
tionsfor variable and array de
larations to de
lare lo
al data, and the 
ode translation fun
tion for 
ommands(de�ned in se
tion 5.3.14) to exe
ute its 
ode. As de�ned in the proto
ols in se
tion 5.1 the RETURNinstru
tion return 
ontrol to wherever the ant type was 
alled from.5.3.7 Rule De
larationsThe translation of rule de
larations is expressed by the fun
tionCDR : De
Rule! (Pro
Name ,! Code)de�ned in table 5.7. The translation is very similar to the translation of ant type de
larations, howeversin
e rules 
an take parameters, we also need to evaluate those. For this purpose we use the translationfun
tions CPF and CPA de�ned in se
tion 5.3.12. We see that the translation of a rule with or withouta return type results in the same sequen
e of AWLAM instru
tions.5.3.8 Turn De
larationsWe de�ne the translation fun
tionCDT : De
Turn! (Pro
Name ,! Code)to translate turn de
larations. The fun
tion is further de�ned in table 5.8, and is identi
al to thetranslation of rule de
larations. 67



5.3. CODE GENERATION CHAPTER 5. CODE GENERATIONCDR [[rule r (PF ) : typefDV DASgDR℄℄ p = JUMP n2 : LABEL n1 : CPF [[PF ℄℄ : CDV [[DV ℄℄ :CDA [[DA℄℄ : CS [[S℄℄ : RETURN : LABEL n2where n1 = newlabel1 , n2 = newlabel2 and plo
(p) = n1CDR [[rule r (PF ) fDV DASgDR℄℄ p = JUMP n2 : LABEL n1 : CPF [[PF ℄℄ : CDV [[DV ℄℄ :CDA [[DA℄℄ : CS [[S℄℄ : RETURN : LABEL n2where n1 = newlabel1 , n2 = newlabel2and plo
(p) = n1CDR [[�℄℄ p = NOOPTable 5.7: Translation of De
RuleCDT [[turn t (PF ) fDV DASgDT ℄℄ p = JUMP n2 : LABEL n1 : CPF [[PF ℄℄ : CDV [[DV ℄℄ :CDA [[DA℄℄ : CS [[S℄℄ : RETURN : LABEL n2where n1 = newlabel1 , n2 = newlabel2and plo
(p) = n1CDT [[�℄℄ p = NOOPTable 5.8: Translation of De
Turn5.3.9 Team De
larationsWhen a team is de
lared, we need to update 
ertain storage lo
ations (see the de�nition of the transitionssystem for TeamDe
 for details). We also need to 
al
ulate the next free storage lo
ation, whi
h meansjumping over all lo
ations allo
ated to a team. We 
an make this 
al
ulation at translation time (asopposed to doing it at runtime), sin
e all the numbers needed in the 
al
ulation is known - e.g. themaximum ant 
ount is programmed as an integer literal, so we 
an read the number dire
tly. Had it beenan expression the 
al
ulation 
ould not have been done at translation time, sin
e we would not knowwhi
h number the expression would evaluate to.To translate the team de
larations we have the fun
tionCDT EAM : De
Team! (Pro
Name ,! Code)de�ned by table 5.9.5.3.10 Common Memory De
larationsCommon memory variables are de
lared almost identi
al to normal variables. The only di�eren
e is thatbesides making the de
laration we also update the storage lo
ation 
ontaining the number of 
ommonde
larations made. We have the fun
tionCDMC : De
MC! (Pro
Name ,! Code)whi
h is de�ned in table 5.10 68



CHAPTER 5. CODE GENERATION 5.3. CODE GENERATIONCDTEAM [[
reateTeam(x);DTEAM ℄℄ p = LOAD 3 [SD℄ : PUSH ts : SAVES [SD℄ :LOAD 0 [SD℄ : RAN : PUSH 2 : PUSH ts : ADD : SAVE [SD℄ :LOAD 0 [SD℄ : RAN : PUSH 3 : PUSH ts : ADD : SAVE [SD℄ :LOAD 3 [SD℄ : PUSH 1 : ADD : SAVE 3 [SD℄ :PUSH n : SAVEREG [NEXT ℄ : CDTEAM [[DTEAM ℄℄where ts = tlo
(x) andn = ts+ 4 + teambrain de
laration 
ount+(2 + private de
laration 
ount) � ant 
ountCDTEAM [[�℄℄ p = NOOPTable 5.9: Translation of De
TeamCDMC [[
ommonvar x : type = exp;CDMC ℄℄ p = CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXTLOAD 6 [SD℄ : PUSH 1 : ADD : SAVE 6 [SD℄ : CDMC [[DMC ℄℄where n = mlo
 (memory; x)CDMC [[�℄℄ p = NOOPTable 5.10: Translation of De
MC5.3.11 Teambrain and Private Memory De
larationsWhen de
laring a teambrain or a private memory variable there are no assignment in
luded. Sin
ewe have already determined the relative storage lo
ation of the variables, we only need to update thelo
ations dedi
ated to the number of teambrain and private memory allo
ations made.We have the fun
tions CDMT : De
MT! (Pro
Name ,! Code)and CDMP : De
MP! (Pro
Name ,! Code)de�ned in the tables 5.11 and 5.12.CDMT [[teambrain var x : type;CDMT ℄℄ p = LOAD 7 [SD℄ : PUSH 1 : ADD : SAVE 7 [SD℄ : CDMT [[CDMT ℄℄CDMT [[�℄℄ p = NOOPTable 5.11: Translation of De
MT69



5.3. CODE GENERATION CHAPTER 5. CODE GENERATIONCDMP [[private var x : type;CDMP ℄℄ p = LOAD 8 [SD℄ : PUSH 1 : ADD : SAVE 8 [SD℄ : CDMP [[CDMP ℄℄ pCDMP [[�℄℄ p = �Table 5.12: Translation of De
MP5.3.12 Formal and A
tual ParametersTogether formal and a
tual parameters de
larations perform the fun
tion of a variable de
laration. Thea
tual parameters are pla
ed on the sta
k, and the translation of the formal parameters stores the a
tualparameters in the allo
ated storage lo
ations.We have the fun
tions CPF : FParm! (Pro
Name ,! Code)and CPA : AParm! (Pro
Name ,! Code)de�ned in table 5.3.12.CPF [[var x : type;PF ℄℄ p = SAVE 0 [NEXT ℄ : NEXT : CPF [[PF ℄℄CPF [[�℄℄ p = NOOPCPA [[ae;PA℄℄ p = CPA [[PA℄℄ : CA [[ae℄℄CPA [[�℄℄ p = NOOPTable 5.13: Translation for formal and a
tual parameters5.3.13 WorldThe translation of the world 
onstru
t is a
tually the translation of the entire program. All othertranslation fun
tions are 
alled from CW expressed asCW :World! (Pro
Name ,! Code)and de�ned in table 5.14. We see that we make a 
al
ulation at translation time. We need to updatethe register NEXT to point at the address following the food allo
ations. We 
an make this 
al
ulationnow, be
ause we know both the number of dedi
ated storage lo
ations and the maximum pie
es of foodallowed. 70



CHAPTER 5. CODE GENERATION 5.3. CODE GENERATIONCW [[world (n1; n2; n3) fDMCDMTDMP = PUSH n1 : SAVE 0 [SD℄ : PUSH n2 : SAVE 1 [SD℄ :DRDTDATmainfDTEAMDVDASgg℄℄ p PUSH n3 : SAVE 2 [SD℄ : PUSH nnext : SAVEREG [NEXT ℄CDMC [[DMC ℄℄ : CDMT [[DMT ℄℄ : CDMP [[DMP ℄℄ : CDT EAM [[DTEAM ℄℄ :CDR [[DR℄℄ : CDT [[DT ℄℄ : CDAT [[DAT ℄℄ : LABEL 0 :CDV [[DV ℄℄ : CDA [[DA℄℄ : CS [[S℄℄where nnext = 9 + food 
ount � 2Table 5.14: Translation for world de
laration
5.3.14 Commands
To translate 
ommands we have the fun
tion

CW :World! (Pro
Name ,! Code)
de�ned in table 5.16.The translation of the AWL 
ommands are for the most part straight forward. There are however a
ouple of 
onstru
ts, whi
h need explaining. The translation of pro
ess needs to update the storagelo
ation dedi
ated to the 
urrent team and 
urrent ant. To do so it evaluates its parameters to the sta
k,and then saves the values and 
alls the given ant type.The return 
ommand is translated to instru
tions, whi
h saves the parameters at lo
ation 0 relatively tothe register LS - as spe
i�ed in our proto
ols. The skip 
ommand translates to a NOOP (no operation)instru
tion, sin
e it 
hanges nothing. 71



5.4. SUMMARY CHAPTER 5. CODE GENERATION
CS [[r (PA)℄℄ p = CPA [[PA℄℄ : CALL n1; n2where n1 = plo
(r) and n2 = parameter 
ountCS [[x = exp;℄℄ p = CE [[exp℄℄ : SAVE n [LS℄where n = mlo
(p; x)CS [[x [ae℄ = exp; ℄℄ p = CE [[exp℄℄ : CA [[ae℄℄ : PUSH n : ADD : SAVES [LS℄where n = mlo
 (p; x)CS [[endturn t (PA)℄℄ p = CPA [[PA℄℄ : CALL n1; n2where n1 = plo
(t) and n2 = parameter 
ountCS [[pro
ess (ae1; ae2; at)℄℄ p = CA [[ae1℄℄ : SAVE 4 [CT ℄ : CA [[ae2℄℄ :SAVE 5 [CA℄ :: CALLAT n :where n = plo
(at)CS [[while(be)fSg℄℄ p = LABEL n1 : CB [[be℄℄ : JUMPF n2 :CS [[S℄℄ : JUMP n1 : LABEL n2where n1 = newlabel1and n2 = newlabel2CS [[if(be)fS1gelsefS2g℄℄ p = CB [be℄ : JUMPF n1 : CS [[S1℄℄ :JUMP n2 : LABEL n1 : CS [[S2℄℄ : LABEL n2where n1 = newlabel1 and n2 = newlabel2CS [[
mem x = exp; ℄℄ p = CE [[exp℄℄ : SAVE n [CM ℄Where n = mlo
 (memory; x)CS [[tmem x = exp; ℄℄ p = CE [[exp℄℄ : SAVE n [CTM ℄Where n = mlo
 (memory; x)CS [[pmem x = exp; ℄℄ p = CE [[exp℄℄ : SAVE n [CAM ℄Where n = mlo
 (memory; x)CS [[setProperty(ae; exp);℄℄ p = CE [[exp℄℄ : CA [[ae℄℄ : SAVES [SD℄CS [[S1S2℄℄ p = CS [[S1℄℄ : CS [[S2℄℄CS [[return exp;℄℄ p = CE [[exp℄℄ : SAVE 0 [LS℄CS [[skip;℄℄ p = NOOP :Table 5.16: Translation of 
ommands5.4 SummaryWe have now de�ned how to translate an AWL program to a sequen
e of AWLAM instru
tions througha list of translation fun
tions. We have made su
h fun
tions for ea
h synta
ti
al 
onstru
t of AWL. Thequestion that now remains is how to prove that the translation is in fa
t 
orre
t. Fortunately that is thetopi
 of the next 
hapter. 72



Chapter 6Provable Corre
t ImplementationIn the last 
hapter we de�ned the abstra
t ma
hine AWLAM, and 
onstru
ted 
ode generating fun
tions,whi
h translated AWL 
ommands into a sequen
e of AWLAM instru
tions. In this 
hapter we will showthat the translation is in fa
t 
orre
t, and we will de�ne what 
orre
t means in this 
ontext. This 
hapterwill only show a hand-full of proofs - the remaining 
an be found in Appendix A.To avoid 
onfusion we will refer to AWLAM as AM.6.1 Corre
tnessWe de�ne the translation of an AWL program into AM 
ode to be 
orre
t if (and only if) the exe
ution ofthe AM 
ode on the abstra
t ma
hine will give the same result as spe
i�ed by the operational semanti
sfor AWL.Sin
e AWL and AM has the same type of storage, yielding the same result means ending up with identi
alstorage states.In the following se
tions we will prove that the translation fun
tions from the previous 
hapters are
orre
t. We will divide the proofs into� proving the 
orre
t implementation of de
larations,� proving the 
orre
t implementation of expressions and� proving the 
orre
t implementation of 
ommands.However we �rst need to des
ribe the te
hniques, whi
h we will use to make the proof.6.2 Proof Te
hniquesWe will 
ondu
t proofs by the two di�erent proof te
hniques:� indu
tion on the shape of derivation trees, and� indu
tion on the length of 
omputation sequen
es.Below follow a short des
ription of ea
h of the two te
hniques.Indu
tion on the shape of derivation trees 1Proofs by indu
tion on the shape of derivation trees are 
ondu
ted on the following manner.1[2, p. 28℄ 73



6.3. MEANING OF COMMANDS CHAPTER 6. PROVABLE CORRECT IMPLEMENTATION� We prove that the property, whi
h we are trying to prove, holds for all simple derivation trees byshowing that it holds for the axioms of the transition system.� We then prove that the property holds for all 
omposite derivation trees. This is done by assumingfor ea
h semanti
 rule that the property holds for the premises of the rule, and then proving thatit also holds for the 
on
lusion provided that the side 
onditions of the rule are satis�ed.Indu
tion on the length of 
omputation sequen
es 2Proofs by indu
tion on the length of 
omputation sequen
es are 
ondu
ted in the following manner.� We prove that the property holds for all 
omputation sequen
es of length 0� We then prove that the property holds for all other derivation sequen
es by �rst assuming that itholds for all sequen
es at length most k, and then showing that it then also holds for sequen
es ofof length k + 1.6.3 Meaning of CommandsFor AWL we de�ne the meaning of 
ommands S as a partial fun
tion from Store to Store. 3SAWL : Com! (Store ,! Store)whi
h means that for ea
h 
ommand S, we have a partial fun
tion SAWL [[S℄℄ 2 Store ,! Store. Thisfun
tion is de�ned asSAWL [[S℄℄ sto = � sto0undefined if envV ; envP ` hS; stoi ! sto0otherwiseWe also de�ne the meaning of a sequen
e of instru
tions on AM as a partial fun
tion from Store toStore. M : Code! (Store ,! Store)and more spe
i�
 M [[
℄℄ sto = ( sto0undefined if hr; 
; �; stoi .� hr0; �; e; sto0iotherwiseSo using these fun
tions, we 
an determine how AWL 
ommands or AM instru
tions will 
hange thestorage.Using the fun
tion M we 
an now also spe
ify the meaning of a 
ommand S by translating it intoAM instru
tions and then exe
uting the instru
tions on the abstra
t ma
hine. We de�ne the fun
tionSAM [[S℄℄ : Com! (Store ,! Store) bySAM [[S ℄℄ = (MÆ CS) [[S ℄℄ =M (CS [[S ℄℄)2[2, p. 37℄3[2, p. 31℄ 74



CHAPTER 6. PROVABLE CORRECT IMPLEMENTATION 6.4. NOTATION6.4 NotationSin
e we do not want to make the proofs of 
orre
tness to hard to read, we will not write e.g. envp; envV ; sto `ae!ae z when we need to imply that a arithmeti
 expression evaluates to the number z in the semanti
sof AWL. Instead we will just assume that the reader understands that this is the 
ase and use z. We willof 
ourse only do this when there 
an be no doubt. If we do need to write the 
omplete transition rule,we will for the most part omit the �rst part and just write e.g. ae!ae z.We will make the following short
uts:z where N [[n℄℄ = z and where envp; envV ; sto ` ae!ae zb where envp; envV ; sto ` be!be bd where envp; envV ; sto ` de!de dv where envp; envV ; sto ` exp!exp vThis means that if we en
ounter e.g. the 
ommand PUSH n we 
an write hr;PUSH n; �; stoi.hr; �; z; stoiwithout any further explanation.6.5 Variable De
larationsBefore proving the 
orre
tness of variable de
larations, we must de�ne whi
h properties that must hold.The intuitive 
orre
tness is that the storage states are identi
al in the two semanti
s after de
laring avariable. We would also like the register NEXT to point to the same storage lo
ation as the pointernext in the semanti
s of AWL. We de�ne the following lemma to express this.Lemma 6.5.1 For all variable de
larations we have thatif hDV ; envV ; stoi ! (env0V ; sto0) then hr; CDV [[DV ℄℄ p; �; stoi .� hr0; �; �; sto0iwhere env0V (next) = r0(NEXT )So ea
h variable must be stored at the same storage lo
ation in the two semanti
s. Also the pointer nextmust point to the same lo
ation as the register NEXT after de
laration.Proof: We will make the proof by indu
tion on the shape of the derivation tree.The 
ase: [Dv-variable-de
laration-empty℄We assume that h"; envV ; stoi !DV (envV ; sto). Using the translation fun
tion we get that CDV [[�℄℄ p =NOOP. Using the semanti
s of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiwhi
h 
ompletes the proof of this 
ase.The 
ase: [Dv-variable-de
laration℄We assume that hvar x :type=exp;DV ; envV ; stoi ! (env0V ; sto0) holds be
ause75



6.6. ARRAY DECLARATIONS CHAPTER 6. PROVABLE CORRECT IMPLEMENTATIONhDV ; envV [x 7! (type; l)℄ [next 7! new (l)℄ ; sto [l 7! v ℄i !DV �env0V ; sto0�(whi
h is the premise)be
ause l = envV (next).Using the 
ode translation fun
tion we get thatCDV [[var x : type=exp;DV ℄℄ p = CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ pWe 
an now make the following 
omputation sequen
e.hr; CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ p; �; stoi .�hr0;SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ p; v; stoi .hr00;NEXT : CDV [[DV ℄℄ p; �; sto00i .hr000;CDV [[DV ℄℄ p; �; sto00iWe see that sto00 = [l 7! v℄, so it follows that the variables are stored at the 
orre
t lo
ations.Applying the indu
tion hypothesis to the premise we get thathr00;CDV [[DV ℄℄ p; �; sto00i .� hr0; �; �; sto0iwhi
h 
ompletes the 
omputation whi
h ends in the required state. It follows from the 
omputationsequen
e that env0V (next) = r0(NEXT ). This 
ompletes the proof of lemma A.1.1.6.6 Array De
larationsWe have allready de�ned a lemma expressing the 
orre
tness of variable de
larations. The 
orre
tness ofarray de
larations are naturally almost identi
al. We therefore de�ne the following lemma4.Lemma 6.6.1 For all array de
larations we have thatif hDA; envV ; stoi ! (env0V ; sto0) then hr; CDA [[DA℄℄ p; �; stoi . hr0; �; �; sto0iwhere r(NEXT ) = envV (next)So ea
h array must be stored at the same storage lo
ations in the two semanti
s. Also the pointer nextmust point to the same lo
ation as the register NEXT after de
laration.Proof: We will use indu
tion on the shape of the derivation tree to prove lemma A.1.2.The 
ase: [Da-de
laration-empty℄We assume that h�; envV ; stoi !DA (envV ; sto). Using the translation fun
tion we get that CDA [[�℄℄ p = NOOP,and with the semanti
s of NOOP we have thathr ;NOOP; �; stoi . hr ; �; �; stoi4[2, p. 73℄ 76



CHAPTER 6. PROVABLE CORRECT IMPLEMENTATION 6.7. ARITHMETIC EXPRESSIONSwhi
h 
ompletes the proof of this 
ase.The 
ase: [Da-de
laration℄We assume that harray x [n℄ :type=exp;DA; envV ; stoi !DA �env0V ; sto0�be
ause hDA; envV [x 7! (type; l ; z)℄[next 7! new (l ; z))℄; sto[li 7! v ℄i !DA �env0V ; sto0�where i 2 [0::z � 1℄ and l = envV (next) and z > 0.Using the 
ode translation fun
tion we get thatCDA [[array x [n℄ : type = exp DA℄℄ p =PUSH n3 : LABEL n1 : DUP : PUSH 0 : EQ : NEG : JUMPF n2 : CE [[exp℄℄ : SAVE 0 [NEXT ℄ :NEXT : PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ pWe 
an now make the following 
omputation sequen
e:�r ; PUSH n3 : LABEL n1 : DUP : PUSH 0 : EQ : NEG : JUMPF n2 : CE [[exp℄℄ : SAVE 0 [NEXT ℄: NEXT : PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; �; sto� .7�r ; CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : PUSH 1 : SWAP :SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e; sto� .�
r 0; PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e; sto0� .�
r 0; JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e0; sto0� .�
r 00; CDA [[DA℄℄ p ; �; sto00� .�hr 0; �; �; sto0iWe get the �rst part of the 
omputation using the semanti
s of AM, and we see that sto00 = sto[li 7! v℄where i 2 [0::N [[n℄℄ � 1℄ as required. We get the last part by applying the indu
tion hypothesis to thepremise. This 
ompletes the proof of lemma A.1.2.6.7 Arithmeti
 ExpressionsSin
e the proofs of the three expression types in AWL are pra
ti
ally identi
al, we will only show theproof of arithmeti
 expressions - or at least some of it. The proofs of boolean and dire
tion expressions
an be found in Appendix A, as 
an the remaining part of the proof of arithmeti
 expressions..The intuitive 
orre
tness of an arithmeti
 expression is that it evaluates to the 
orre
t number. Sin
e weare using an evaluation sta
k in AM this means that the 
orre
t value of the expression must be pushedonto the sta
k. We will de�ne the following lemma to express this.Lemma 6.7.1 For all arithmeti
 expressions ae we have that 77



6.7. ARITHMETIC EXPRESSIONS CHAPTER 6. PROVABLE CORRECT IMPLEMENTATIONhr ; CA [[ae℄℄ ; �; stoi . hr; �; z; stoiwhere envP ; envV ; sto ` ae!ae z.Furthermore, all intermediate 
on�gurations of this 
omputation sequen
e will have a non-empty evalu-ating sta
k.Proof: The proof of lemma A.3.1 is done by stru
tual indu
tion on ae.The 
ase: [ae-lit℄Using the 
ode generation fun
tion CA, we have that CA [[n℄℄ p = PUSH n. From the semanti
s of AMwe have that hr ;PUSH n; �; stoi . hr0; �; z; stoiand sin
e n! z in the operational semanti
s for AWL, we have 
ompleted the proof for [ae-lit℄.The 
ase: [ae-var℄We have that CA [[x ℄℄ p = LOAD n [LS ℄, where LS is the register, whi
h points to the lo
al base addressof the 
urrent routine p, and where n = mlo
 (p; x) (the relative address of x inside p).Using the semanti
s of AM we have thathr ;LOAD n [LS ℄; �; stoi . hr0; �; sto (r (LS ) + z) ; stoiIn the operational semanti
s of AWL we have that x ! sto (envV (x)). Using the de�nition of LS andmlo
 we see that r(LS ) + z = envV (x), whi
h 
ompletes the proof of this 
ase.The 
ase: [ae-getProperty℄Using the 
ode translation fun
tion we haveCA [[getProperty(ae);℄℄ = CA [[ae℄℄ : LOADS [SD℄and we there have the 
omputation sequen
ehr ; CA [[ae℄℄ : LOADS [SD℄ ; �; stoi .�hr 0;LOADS [SD℄ ; z1 ; stoi .hr 00; �; z2 ; stoiTo make the �rst 
omputation we apply the indu
tion hypothesis to ae, and to make the se
ond we usethe semanti
s of LOADS. We see that z2 = sto(z1), and using the rule [ae-getProperty℄ we see that thisis the required result.The 
ase: [ae-mult℄We have that CA [[ae1 � ae2 ℄℄ = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ :MULT78



CHAPTER 6. PROVABLE CORRECT IMPLEMENTATION 6.8. COMMANDSApplying the indu
tion hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSin
e we 
an extend the 
ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ :MULT; �; stoi .� hr;CA [[ae1 ℄℄ :MULT; z2; stoi .�hr;MULT; z1 : z2; stoiWe now apply the transition rule for MULT, and gethr;MULT; z1 : z2; stoi .� hr; �; (z1 � z2); stoiSin
e ae1 � ae2 !ae (z1 � z2) in the semanti
s of AWL, the proof is 
omplete.6.8 CommandsIn se
tion 6.3 we de�ned the meaning of 
ommands and instru
tions. We will use these de�nitions tomake a theorem that expresses the 
orre
tness of the translation of 
ommands. The theorem expresses,that if a exe
ution of S terminates in a state in the semanti
s of AWL, then it will also terminate in thesemanti
s of the abstra
t ma
hine AM with the resulting states being equal. This also applies the otherway around. The theorem also expresses that if the exe
ution of S from one state loops in one of thesemanti
s then it will also loop in the other.Theorem 6.8.1 For every statement S of AWL we have that SAWL [[S℄℄ = SAM [[S℄℄5The theorem is proved in two stages expressed by lemma A.4.2 and lemma A.4.3.Lemma 6.8.2 For every statement S of AWL and stores sto and sto0, we have thatif hS; stoi ! sto0 then hr; CS [[S℄℄ ; �; stoi .� hr0; �; �; sto0iIf the exe
ution of S from the store sto terminates in the big step semanti
s for AWL, then the exe
utionof the translated 
ode from the store sto will also terminate in the semanti
s for AWLAM and the resultingstores will be equal.6Proof: The proof of lemma A.4.2 is 
ompleted by indu
tion on the shape of the derivation tree forhS; stoi ! sto0. So we will prove the lemma for ea
h 
ommand in AWL.The 
ase: [s - assign℄We asume that hx = exp; stoi ! sto0 where sto0 = sto[l 7! v℄ , l = envV (x) and exp! v.Using CS we get that5[2, p. 74℄6[2, p. 75℄ 79



6.8. COMMANDS CHAPTER 6. PROVABLE CORRECT IMPLEMENTATIONCS [[x = exp℄℄ p = CE [[exp℄℄ : SAVE n [LS ℄where n = mlo
(p; x). From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti
 rules of AM we gethr0;SAVE n [LS℄; v; stoi . hr00; �; �; sto [(r(LS) + z℄) 7! viSin
e we have that envV (x) = r(LS ) + z using the de�nition of LS , this 
ompletes the proof.The 
ase: [s - 
omp℄Using the semanti
s of AWL we have that hS1S2; stoi ! sto0 be
ause hS1; stoi ! sto00 and hS2; sto00i !sto0. Using CS we get that CS [[S1S2 ℄℄ = CS [[S1 ℄℄ : CS [[S2 ℄℄We apply the indu
tion hypothesis to the premises and get that
r; CS [[S1 ℄℄ ; �; sto� .� hr00; �; �; sto00iand
r00; CS [[S2 ℄℄ ; �; sto� .� hr0; �; �; sto0iSin
e we 
an extend the 
ode 
omponent we get that
r; CS [[S1℄℄ : CS [[S2 ℄℄ ; �; sto� .� 
r00; CS [[S2℄℄ ; �; sto00� .� hr0; �; �; sto0iwhi
h 
ompletes the proof.The rest of the 
ases 
an be found in Appendix A. We will now pro
eed to prove the following lemma7.Lemma 6.8.3 For every 
ommand S of AWL and stores sto and sto0, we have thatif hr; CS [[S℄℄ ; �; stoi .k hr0; �; e; sto0i then hS; stoi ! sto0So if the exe
ution of the 
ode for S from a storage s terminates, then the AWL semanti
s of S from swill terminate in a state being equal to the storage of the terminal 
on�guration.Proof: We will prove lemma A.4.3 by indu
tion on the length k of the 
omputation sequen
e on AM. Ifk = 0 then the result holds be
ause CS[[S ℄℄ = � is impossible. So we assume that it holds for k � k0 andwill prove that it holds for k = k0 + 1. We make a 
ase study on the 
ommand S.The 
ase: x = exp;We have that CS [[x = exp; ℄℄ = CE [[exp℄℄ : SAVE n [LS ℄ , so we assume thathr; CE [[exp℄℄ : SAV E n [LS℄; �; stoi .k0+1 hr0; �; e; sto0i7[2, p. 77℄ 80



CHAPTER 6. PROVABLE CORRECT IMPLEMENTATION 6.9. SUMMARYSin
e we 
an split the instru
tion sequen
e into two we have thathr;CE [[exp℄℄ ; �; stoi .k1 hr00; �; e00; sto00iandhr; SAV E n [LS℄; e00; sto00i .k2 hr0; �; e; sto0iwhere k1 + k2 = k0 +1. From the expression lemmas we get that sto00 = sto and e00 = v where exp! v .Using the semanti
s of SAVE we see that sto0 = sto[(r(LS ) + z) 7! v℄. It follows from [s - assign℄ thathx = exp;; stoi ! sto0, whi
h 
ompletes the proof.The 
ase: if(be)fS1gelsefS2g trueWe have that CS [[if (b)fS1 gelsefS2 g℄℄ =CB [be℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2We assume thathr;CB [be℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; stoi .k0+1 hr0; �; e; sto0iSin
e we 
an split up the 
ode 
omponent we gethr; CB [[be℄℄; �; stoi .k1 hr0000; �; e000; sto0000ihr0000;JUMPF n1; e000; sto0000i .k2 hr000; �; e00; sto000ihr000;CS [[S1 ℄℄; e00; sto000i .k3 hr00; �; e0; sto00ihr00;JUMP n2; e0; sto00i .k4 hr0; �; e; sto0iwhere k1 + k2 + k3 + k4 = k0 + 1 and k2; k4 = 1.Sin
e CB [[be℄℄ and JUMPF does not 
hange the storage, we have that sto0000 = sto000 and sto00 = sto0.Likewise CS [[S1 ℄℄ and JUMP does not 
hange the evaluation sta
k so we have that e00 = e0 = e = �. Weassume that e000 = tt .Sin
e k3 � k0 we 
an apply the indu
tion hypothesis to this 
omputation and then we have thathS1; stoi ! sto0The rule [S-if-true℄ gives the required hif(be)fS1gelsefS2g; stoi ! sto0. The proof of if(be)fS1gelsefS2gfalseis analogous.The remaining proofs of this lemma 
an be found in Appendix A.6.9 SummaryIn this 
hapter we have (almost) proved that the translation fun
tions de�ned in the previous 
hapterare 
orre
t. We 
an not 
laim to have proven the total 
orre
tness of the translation, sin
e we have notproved the 
orre
tness of rule and ant type de
larations due to a la
k of time. It's obious that with thema
hine ar
hite
ture of AWLAM, we are still far from any normal hardware implemented ma
hine (su
h81



6.9. SUMMARY CHAPTER 6. PROVABLE CORRECT IMPLEMENTATIONas the pentium). However we are now one step 
loser, and with the proof made in this 
hapter, one 
ould
arry on towards an even lower level.When making a proof like this, we make a 
omputation sequen
e for ea
h sequen
e of translated 
ode.During this pro
ess, one is 
ertain to �nd errors or misunderstandings in the translated 
ode. Thisnaturally makes it a very good exer
ise to do when wanting to translate a programming language intoanother language.In the next 
hapter we will implement the results of our theoreti
al work.
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Chapter 7ImplementationIn the following se
tion we will des
ribe how AWL is implemented from the high-level language tothe running program. First o� we will des
ribe the pro
ess from the AWL do
ument to the AWLAMdo
ument. In this se
tion we have s
anning, parsing, identi�
ation, type 
he
king and �nally 
odegeneration. After this we will des
ribe how the abstra
t ma
hine works and how we will get from theAWLAM do
ument to a running program using an interpreter.7.1 S
anning and ParsingFor this task we have 
hosen to use a tool that does the task for us. We have 
hosen to use SableCC1,be
ause it both s
ans and parses the 
ode, unlike e.g. JLex that only s
ans the 
ode or JCup that onlyparses. Furthermore SableCC produ
es an abstra
t syntax tree that we will use in the later phases of
ompiling. The s
anner and parser that SableCC generates are based on a kind of Extended Ba
kus NaurForm (EBNF). This do
ument 
an be found in the appendix.In lexi
al analysis, or s
anning as it is also 
alled, the input program is s
anned and divided into tokensthat the parser 
an use. A token is des
ribed by its kind and its spelling. This means that in this partof the 
ompiler, identi�ers, keywords and other single parts of the program are re
ognized and put into atoken stream. This token stream is then used by the parser, in that it is examined in order to see whetherthe statements made in the original program mat
h those des
ribed in the grammar.The purpose of parsing is to determine whether a stream of tokens is valid in a

ordan
e to the language� and if this is the 
ase, to group the tokens into larger pie
es, su
h as Commands or Expressions.An important 
on
ept in parsing is unambiguity, meaning that a spe
i�
 senten
e has one and only oneparse tree. The reason for this is that a senten
e with more than one parse tree 
an lead to di�erent endresults. Just 
onsider the simple mathemati
al senten
e 2+ 2 � 5. To us humans it is easy to see that theresult is 12, namely by un
ons
iously adding parentheses in order to determine the pre
eden
e: 2+(2 �5).To the program, however, if nothing else is spe
i�ed, the result might as well be 20: (2 + 2) � 5. Lu
kily,if we have 
reated our EBNF grammar 
orre
tly this should not be a problem.As mentioned earlier in this se
tion, SableCC makes an abstra
t syntax tree for the program. Furthermoreit produ
es a tree-walker whi
h is based on an extended visitor pattern.7.2 Identi�
ation and Type Che
kingUsing the before mentioned abstra
t syntax tree, we 
an now perform identi�
ation and type 
he
kingalso known as 
ontextual analysis.1http://www.sable

.org/ 84



CHAPTER 7. IMPLEMENTATION 7.2. IDENTIFICATION AND TYPE CHECKINGExpression type Input Outputor-Expression Boolean � Boolean ! Booleanand-Expression Boolean � Boolean ! Booleanequality-Expression Dire
tion �Dire
tion ! BooleanInteger � Integer ! BooleanBoolean � Boolean ! Booleanrelational-Expression Integer � Integer ! Booleanadd-Expression Integer � Integer ! Integermult-Expression Integer � Integer ! Integerunary-Expression Boolean ! BooleanDire
tion ! Dire
tionInteger ! IntegerFigure 7.1: Expression hierar
hy�The �rst task of the 
ontextual analyzer is to relate ea
h applied o

urren
e of an identi�erin the sour
e program to the 
orresponding de
laration.�2To make sure that a program does not violate any 
ontextual rules, one �rst has to look at identi�
ation.What happens in the identi�
ation phase is that when an identi�er is en
ountered, the identi�
ationpro
ess 
he
ks to see whether this identi�er has been de
lared earlier in the program. If it has not, thenthe identi�er ought to be about being de
lared (varident:integer) or else the program is ill formed andan error will be generated.One should noti
e when reading the above, that in order to positively know whether a rea
hed identi�erhas previously been en
ountered, you would have to sear
h though all of the program examined so far. Inour 
ase this is not so, however. Instead we will use an identi�
ation table, in whi
h all the identi�ers arestored along with their type and other relevant information. Using this method, when en
ountering anidenti�er (assuming that this is not the de
laration), the table is simply 
he
ked for previous o

urren
esof the identi�er.�The se
ond task of the 
ontextual analyzer is to ensure that the sour
e program 
ontains notype errors.�3In type 
he
king we need to make 
ertain that all expressions yield the expe
ted type. An example ofthis is the rule VarInit , whi
h might look like this: var id : integer = 5+5;. Here we need to make surethat the expression 5+5 yields an integer. This is one of the obvious rules � one not so obvious is when,say, a non turn based rule is involved. Here we need to 
he
k whether the argument types sent alongwith the rule 
all mat
h those expe
ted. Furthermore we need to 
he
k if the 
orre
t type is returnedby the return 
ommand in the rule, and 
he
k that it is not pla
ed in su
h a way that it will result inunrea
hable statements.In �gure 7.1 we show the expression hierar
hy for AWL. Here we see that if we have the expression5 + 3 � 1 we must �rst evaluate the 3 � 1 part, and then evaluate the result of it along with the 5+part. This is implemented in type 
he
k in a way so that when an Expression is en
ountered, a methodevalExpression( Expression ) is 
alled. The method �rst 
he
ks to see if the expression has any or-Expressions in it � and if not, it 
ontinues down the list. If it does 
ontain an or-Expression, the 
he
kedexpression is divide into two parts; the left and right side of the 'or' and uses evalExpression on ea
hpart. When both parts have done evaluating they return their respe
tive types to the previous method.The method 
an then evaluate the two expressions a

ording to the above rules. What we end up with2[3, page 136℄3[3, page 150℄ 85



7.3. CODE GENERATION CHAPTER 7. IMPLEMENTATIONis either a SimpleType or an error is dis
overed during the pro
ess. In the latter 
ase an ex
eption isthrown.By this we 
an 
on
lude that if the identi�
ation and type 
he
king do not throw any ex
eptions, theprogram is well formed, and we 
an pro
eed to the next step of 
ompiling whi
h is the a
tual 
odegeneration.7.3 Code GenerationIn 
ode generation we will 
ontinue using the abstra
t syntax tree generated by SableCC. We will usethe rules for 
ode generation des
ribed in 
hapter 5, and apply these when walking trough the syntaxtree. A more elaborate des
ription of the fun
tions in the 
ode generation 
an be found in the previousmentioned 
hapter.The result of 
ode generation is an intermediate 
ode do
ument used by the abstra
t ma
hine AWLAMwhi
h is des
ribed next.7.4 AWLAM ImplementationThe implementation of the AWL abstra
t ma
hine follows the operational semanti
s of AWLAM is 
loseas possible. The only notable di�eren
e is the fa
t that the implementation works with a PC register(program 
ounter) and the 
ode is not pla
ed on a sta
k, but in (in this 
ase, simulated) memory. Thisis, however, the way a hardware ma
hine would have been implemented, and it is merely a slight stepdown the abstra
tion ladder from the operational semanti
s. The reason for this minor abstra
tion inthe operational semanti
s is explained in se
tion 3.The abstra
t ma
hine is implemented in Java, but it 
ould just as well have been any other programminglanguage. It might have been more pro�table to 
ode an interpreter in an assembly language, though, butsin
e the purpose of this one was really not exe
ution speed, and sin
e the interpreter is in the peripheryof the proje
t's subje
t, we have 
hosen to do it in a high-level language. The spe
i�
 language Java was
hosen be
ause of it being the language of most experien
e to the implementer.7.4.1 The Evaluation Sta
kThe standard environment of Java supports an implementation of a sta
k, whi
h we have pla
ed a wrapperaround and used here. The wrapper serves only as an interfa
e re
eiving and returning the basi
 type intinstead of Obje
ts as is the 
ase with the standard Java implementation sin
e ints are what we operateon in the rest of the implementation.This makes it very easy to implement the AWLAM instru
tions that operate on the evaluation sta
k,sin
e it is just a question of invoking the push and/or pop methods whenever the operational semanti
sdi
tates it.7.4.2 RegistersThere is a �xed amount of registers to be implemented into the AM. Therefore it was obvious to use anarray whi
h, in Java terms, has a �xed amount of indexes. For referring to the spe
i�
 indexes of thearray, i.e. the spe
i�
 registers of the AM, we use so-
alled �elds, or �nal variables (
onstants). One perindex in the array, ea
h with a name of a register and with a (�xed) value of an index in the array. Thismakes us able to refer to e.g. the PC register by reg[PC℄, provided the array is 
alled reg.86



CHAPTER 7. IMPLEMENTATION 7.4. AWLAM IMPLEMENTATION} else if (instr[0℄.equals(�JUMPF�)) {String n = instr[1℄;int z = label(N(n));int b = sta
k.pop();reg[PC℄ = (b == FALSE ? z : reg[PC℄ + 1);} else if Figure 7.2: Variables equal to those in the operational semanti
s.} else if(instr[0℄.equals(�JUMPF�)) {reg[PC℄ = (sta
k.pop() == FALSE ? label(N(instr[1℄) : reg[PC℄ + 1);} else if Figure 7.3: Higher level of optimization.7.4.3 MemoryThe memory, too, is an array. Or in fa
t, two arrays; one for 
ode, and one for data. This is not thenormal way of doing so, and it prevents methods su
h as self-modifying 
ode. However, we don't needsu
h things in AWLAM and that 
ombined with the fa
t that splitting memory into two makes it possiblefor us to keep 
ode in a string array (as we interpret assembler-like 
ode and not binary ma
hine-like
ode) and data in an int array, made us 
hoose to do so. We still use an overall memory size, though,whi
h is by the way adjustable from the 
ommand line, and assign only as mu
h 
ode memory as neededwhile the rest goes to data memory.As said, all data items are stri
tly integer values, represented by Java's int type. In AWL, however,we have other basi
 types, namely booleans and dire
tions4. They both have a very limited amount ofpossible values, so we solve this by simply assigning an int value to ea
h boolean and dire
tion value.To represent these values, we use 
onstants (again as Java �elds) in order to easily be able to work withthem. This way we 
an push e.g. a �true� value by sta
k.push(TRUE); given �sta
k� is the name ofthe evaluation sta
k, and �push� is the name of the method that pushes new values into the top of a givensta
k. Both is the 
ase in our situation.7.4.4 InterpretationThe interpretation itself is basi
ally a while 
onstru
t, running as long as the program 
ounter pointswithin the 
ode memory. For ea
h loop, the 
ode line pointed out by PC is evaluated, and a
tion is takena

ordingly. This a
tion in
ludes updating the PC register, whether this means simply in
reasing it byone, as in most instru
tions, or 
hanging it to a totally di�erent value, as is the 
ase with e.g. the JUMPinstru
tion.Most of the a
tions performed when an instru
tion is re
ognized 
ould have been formatted quite di�er-ently, and possibly more e�
iently. However, we wanted to make a 
learer 
onne
tion to the operationalsemanti
s, and therefore we often save a given value in a variable (named as in the operational semanti
s),just to use it for the last time during the program in the very next Java 
ode line. See an example of thisin �gures 7.2 and 7.3.In the operational semanti
s we have fun
tions for di�erent purposes. An example of this is the N [n℄fun
tion whi
h gives the value of a numeral n. Equally we get the �numerals� as strings so this is asuitable reason for 
onstru
ting an N(n) method, 
onverting a string n to an int. The label(l), m(), andr() methods are of the same prin
iple, only that their fun
tions are respe
tively to return the memorylo
ation pointed to by a label, to return the value of a given memory lo
ation, and to return the value4See e.g. se
tion 2.8 about these. 87



7.5. SCREENSHOTS CHAPTER 7. IMPLEMENTATIONof a register. All methods are implemented in a very simply way, and from a te
hni
al point of viewthey 
ould probably have been omitted � however they serve a purpose of easy understanding as well asreferen
e to the operational semanti
s.
7.5 S
reenshots
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CHAPTER 7. IMPLEMENTATION 7.6. SUMMARY7.6 SummaryIn this 
hapter we have had a look at some aspe
ts of the implementation in the various stages froms
anning and parsing, through identi�
ation and type 
he
king to 
ode generation, and at last the inter-preter.The s
anning and parsing part is in our 
ase handled by SableCC. Fed with something very 
lose to anEBNF of the AWL language, the tool provides us with a s
anner and parser able to verify a given pie
eof AWL 
ode by produ
ing an abstra
t syntax tree and traversing through it using an extended visitor'spattern.Identi�ers are kept tra
k of by an identi�
ation table so that we will not have to look through the wholeprogram every time an identi�er is en
ountered. Next phase is type 
he
king, where we make sure thatfor e.g. every integer variable de
laration, also the value initializing it must be an integer.Code generation is based on the rules set up earlier in this report and produ
es program 
ode, interpretableby the AWLAM interpreter.The interpreter itself emulates a ma
hine, in that it 
ontains registers, memory and an evaluation sta
k.It runs through the AWLAM 
ode from one end to the other, rea
ting on the instru
tions it sees, whetherthe instru
tions tell the interpreter to 
al
ulate something and pro
eed or jump to another pla
e in the
ode.
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Chapter 8Con
lusionIn the pre
eding 
hapters we have des
ribed the development of the programming language AWL. Wewill now 
ompare what was required of the programming language with what has happened in the report.We will go through these requirements one by one and des
ribe how we have dealt with the problem1.AWL has to 
ontain high level language 
onstru
ts, su
h as in C:We have implemented AWL to
ontain high-level 
onstru
ts su
h as while and if statements, along with variable and array de
larations.AWL has to provide spe
i�
 
onstru
ts for the programmer, so that rules su
h as walk(LEFT )areeasy to 
reate: AWL provides ways for the programmer to de
lare a rule, and then a way to 
all thisrule from a 
ommand or an expression. Furthermore we have provided a 
onstru
t that allows the pro-grammer dire
t a

ess to the memory so that 
reating an ant of moving an ant be
omes possible. Thismakes the language very �exible for the programmer using it.AWL has to provide a 
onstru
t to allow the world programmer to move the fo
us fromone ant and team to another ant and team: AWL 
ontains a 
ommand that allows an ant to bepro
essed i.e. moved or what ever the ant 
reator wants his or her ant to do.AWL has to provide some �ant memory� whi
h di�er in s
ope: In AWL ea
h ant will have itsown memory, that no other ant 
an a

ess. Furthermore AWL provides a team memory that all antsfrom a team 
an a

ess and modify, and a 
ommon memory that all ants regardless of team 
an a

ess.AWL has to provide a 
onstru
t for 
reating teams: We have added a 
onstru
t that 
an add ateam to a game by a simple de
laration.AWL has to 
ompile to an abstra
t ma
hine, whi
h we will 
all AWLAM(AWL Abstra
tMa
hine): The abstra
t ma
hine AWLAM has been de�ned and implemented. Also an interpreterto run the 
ode generated by AWLAM has been de�ned and implemented. This interpreter shows agraphi
al representation of the game that it interprets.Below we will des
ribe how the produ
t of the report adheres to the goals of the report. We will, likewith the requirements, des
ribe ea
h goal one by one.De�ne the grammar of the high-level language AWL, using Ba
kus Naur Form(BNF): In
hapter 2 of the report the grammar of AWL is des
ribed. This grammar is using the BNF notationform, and des
ribes the 
onstru
ts of the language.De�ne an operational big step semanti
 for AWL: In 
hapter 3 The big step semanti
 of AWLis shown. Here, the full des
ription of how the semanti
s works is given. An abstra
t syntax that the1The requirements 
an also be found in 
hapter 1 90



CHAPTER 8. CONCLUSIONsemanti
s is based on has been de�ned. There is a thorough des
ription of ea
h synta
ti
 
ategory fromthis abstra
ts syntax, and of the rules from ea
h of these 
ategories.De�ne the abstra
t ma
hine AWLAM and have the AWL 
ompile to this: In 
hapter 4 theabstra
t ma
hine(AWLAM) has been de�ned. We here de�ne the abstra
t syntax that AWLAM adheresto, and give a des
ription of ea
h instru
tion found in the syntax.Prove that the translated 
ode is a
tually equivalent with the original AWL 
ode: In orderto prove the translated 
ode is equivalent with the original AWL 
ode, we have in 
hapter 5 des
ribedhow the various semanti
al rules from AWL translates to AWLAM. We then, in 
hapter 6, pro
eed byproving that the implementation is 
orre
t, by 
omparing the translated 
ode with the semanti
s de�nedin 
hapter 3. We here use di�erent forms of indu
tion as a proof method.Our main goal in this proje
t was to de�ne the operational semanti
s of AWL, and then prove that atranslation of AWL 
ode into some target language would a
tually be 
orre
t. To do that it has beenne
essary to de�ne a lot of other things as well, whi
h was not a part of the goal as su
h, but whi
h enablesand helps us to rea
h the desired result. Before de�ning an operational semanti
s it was a ne
essity tohave a syntax whi
h was well de�ned, and a
tually showed the details of all 
onstru
ts. As su
h it wouldhave been enough to just have an abstra
t syntax, but that might have be
ome rather 
omplex sin
e thede�nition of the syntax also gave us insight into what the problem area was a
tually about.As su
h an operational semanti
s serves as a 
lear and pre
ise notation that shows how the languagea
tually behaves when being used. However there is no a
tual standard notation, whi
h makes it di�
ultto des
ribe the semanti
s in a way that is easy to read for everyone. We have aimed at de�ning a notationthat both satis�es the need for a pre
ise de�nition, but also a notation that should be somehow easy toread, 
ompared to the relative 
omplexity of the matter.In the de�nition of the abstra
t ma
hine the main issue was to make a ma
hine that was simple andeasy to understand, but yet at a higher level than for example the Pentium platform is today. A lot ofissues arise when designing a pie
e of software at this level, and we have tried to make it as abstra
tas possible, without a
tually going high level. It would of 
ourse have been possible to use an existingabstra
t ma
hine, but we felt that it would give us a better feeling with the ma
hine to a
tually developit ourselves, and also it enabled us to leave out aspe
ts, whi
h are indeed important from a general pointof view, but whi
h were not 
entral to our proje
t.The de�nition of an operational semanti
s for the abstra
t ma
hine was of 
ourse 
entral to the task ofproving the 
orre
tness of the translation pro
ess, and we have partially proved the equivalen
e of thetwo operational semanti
s using indu
tion, giving us a mathemati
al proof of the 
orre
tness.
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Appendix AProvable Corre
t implementationIn this appendix we have listed all the proofs of translation 
orre
tness.A.1 Variable De
larationsA.1.1 VariablesIn this se
tion we will prove that the translation of variable de
larations is 
orre
t. We de�ne a lemmato express the 
orre
tness.Lemma A.1.1 For all variable de
larations we have thatif hDV ; envV ; stoi ! (env0V ; sto0) then hr; CDV [[DV ℄℄ p; �; stoi .� hr0; �; �; sto0iwhere env0V (next) = r0(NEXT )So ea
h variable must be stored at the same storage lo
ation in the two semanti
s. Also the pointer nextmust point to the same lo
ation as the register NEXT after de
laration.Proof: We will make the proof by indu
tion on the shape of the derivation tree.The 
ase: [Dv-variable-de
laration-empty℄We assume that h"; envV ; stoi !DV (envV ; sto). Using the translation fun
tion we get that CDV [[�℄℄ p =NOOP. Using the semanti
s of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiwhi
h 
ompletes the proof of this 
ase.The 
ase: [Dv-variable-de
laration℄We assume that hvar x :type=exp;DV ; envV ; stoi ! (env0V ; sto0) holds be
ausehDV ; envV [x 7! (type; l)℄ [next 7! new (l)℄ ; sto [l 7! v ℄i !DV �env0V ; sto0�(whi
h is the premise)94



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.1. VARIABLE DECLARATIONSbe
ause l = envV (next).Using the 
ode translation fun
tion we get thatCDV [[var x : type=exp;DV ℄℄ p = CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ pWe 
an now make the following 
omputation sequen
e.hr;CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ p; �; stoi .�hr;SAVE 0 [NEXT ℄ : NEXT : CDV [[DV ℄℄ p; v; stoi .hr;NEXT : CDV [[DV ℄℄ p; �; sto00i .hr00;CDV [[DV ℄℄ p; �; sto00iWe see that sto00 = [l 7! v℄, so it follows that the variables are stored at the 
orre
t lo
ations.Applying the indu
tion hypothesis to the premise we get thathr00;CDV [[DV ℄℄ p; �; sto00i .� hr0; �; �; sto0iwhi
h 
ompletes the 
omputation whi
h ends in the required state. It follows from the 
omputationsequen
e that env0V (next) = r0(NEXT ). This 
ompletes the proof of lemma A.1.1.A.1.2 ArraysThe following lemma expresses the 
orre
tness of array de
larations.Lemma A.1.2 For all array de
larations we have thatif hDA; envV ; stoi ! (env0V ; sto0) then hr; CDA [[DA℄℄ p; �; stoi . hr0; �; �; sto0iwhere r(NEXT ) = envV (next)So ea
h array must be stored at the same storage lo
ations in the two semanti
s. Also the pointer nextmust point to the same lo
ation as the register NEXT after de
laration.Proof: We will use indu
tion on the shape of the derivation tree to prove lemma A.1.2.The 
ase: [Da-de
laration-empty℄We assume that h�; envV ; stoi !DA (envV ; sto). Using the translation fun
tion we get that CDA [[�℄℄ p = NOOP,and with the semanti
s of NOOPwe have thathr ;NOOP; �; stoi . hr ; �; �; stoiwhi
h 
ompletes the proof of this 
ase.The 
ase: [Da-de
laration℄We asume that 95



A.1. VARIABLE DECLARATIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONharray x [n℄ :type=exp;DA; envV ; stoi !DA �env0V ; sto0�be
ause hDA; envV [x 7! (type; l ; z)℄[next 7! new (l ; z))℄; sto[li 7! v ℄i !DA �env0V ; sto0�wherei 2 [0::z � 1℄ and l = envV (next) and z > 0.Using the 
ode translation fun
tion we get thatCDA [[array x [n℄ : type = exp DA℄℄ p =PUSH n3 : LABEL n1 : DUP : PUSH 0 : EQ : NEG : JUMPF n2 : CE [[exp℄℄ : SAVE 0 [NEXT ℄ :NEXT : PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ pWe 
an now make the following 
omputation sequen
e:�r ; PUSH n3 : LABEL n1 : DUP : PUSH 0 : EQ : NEG : JUMPF n2 : CE [[exp℄℄ : SAVE 0 [NEXT ℄: NEXT : PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; �; sto� .7�r 0; CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : PUSH 1 : SWAP :SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e; sto� .�
r 00; PUSH 1 : SWAP : SUB : JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e; sto0� .�
r 000; JUMP n1 : LABEL n2 : POP : CDA [[DA℄℄ p ; e0; sto0� .�
r 0000; CDA [[DA℄℄ p ; �; sto00� .�hr 0; �; �; sto0iWe get the �rst part of the 
omputation using the semanti
s of AM, and we see that sto00 = sto[li 7! v℄where i 2 [0::N [[n℄℄ � 1℄ as required. We get the last part by applying the indu
tion hypothesis to thepremise. This 
ompletes the proof of lemma A.1.2.A.1.3 Common MemoryThe following lemma expresses the 
orre
tness of 
ommon memory variable de
larations.Lemma A.1.3 For all 
ommon memory variable de
larations we have thatif hDMC ; envV ; stoi ! (env0V ; sto0) then hr; CDMC [[DMC ℄℄ p; �; stoi . hr0; �; �; sto0iwhere r0(NEXT ) = env0V (next).So ea
h 
ommon variable must be stored at the same storage lo
ation in the two semanti
s. Also thepointer next must point to the same lo
ation as the register NEXT after de
laration.Proof: We will use indu
tion on the shape of the derivation tree to prove lemma A.1.3.The 
ase: [Dm
-
ommon-empty℄We assume that h"; envV ; stoi !DMC (envV ; sto). Using the translation fun
tion we get that CDMC [[�℄℄ p =NOOP.Using the semanti
s of NOOP we get that 96



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.1. VARIABLE DECLARATIONShr ;NOOP; �; stoi . hr ; �; �; stoiwhi
h 
ompletes the proof of this 
ase.The 
ase: [Dm
-
ommon℄We assume that h
ommon var x : type=exp;DMC ; envV ; stoi ! (env0V ; sto0) holds be
ausehDMC ; envV [x 7! (type; z)℄ [next 7! new(l)℄ ; sto[l 7! v ℄[COMMONDECLS 7! z + 1 ℄iUsing the 
ode translation fun
tion we get thatCDMC [[
ommonvar x : type = exp;CDMC ℄℄ p =CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : LOAD 6 [SD℄ : PUSH 1 : ADD : SAVE 6 [SD℄ : CDMC [[DMC ℄℄We 
an now make the following 
omputation sequen
e.hr;CE [[exp℄℄ : SAVE 0 [NEXT ℄ : NEXT : LOAD 6 [SD℄ : PUSH 1 : ADD : SAVE 6 [SD℄ : CDMC [[DMC ℄℄; �; stoi .�hr00;LOAD 6 [SD℄ : PUSH 1 : ADD : SAVE 6 [SD℄ : CDMC [[DMC ℄℄; �; sto000i .hr00; CDMC [[DMC ℄℄; �; sto00i .hr0; �; �; sto0iWe get the two �rst parts of the 
omputation by using the semanti
s of AM. We see that sto00 = sto[l 7! v℄as required. The last 
omputation is made by applying the indu
tion hypothesis to the premise. It followsfrom the 
omputation sequen
e that r0(NEXT ) = env0V (next) whi
h 
ompletes the proof.A.1.4 Teambrain MemoryThe following lemma expresses the 
orre
tness of teambrain memory variable de
larations.Lemma A.1.4 For all teambrain memory variable de
larations we have thatif hDMT ; envV ; stoi ! (env 0V ; sto0) then hr ; CDMT [[DMT ℄℄ p; �; stoi . hr0; �; �; sto0iSo that state of the storage must be identi
al after 
omputation in the two semanti
s.Proof: We will 
ondu
t the proof of lemma A.1.4 by indu
tion on the shape of the derivation tree.The 
ase: [Dmt-team-empty℄We assume that h"; envV ; stoi !DMT (envV ; sto). Using the translation fun
tion we get that CDMT [[�℄℄ p = NOOP.Using the semanti
s of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiwhi
h 
ompletes the proof of this 
ase.The 
ase: [Dmt-team℄We assume that hteambrain var x : type ;DMT ; envV ; stoi ! (; env0V ; sto0) be
ause97



A.1. VARIABLE DECLARATIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONhDMT ; envV [x 7! (type; z)℄ ; sto[TEAMDECLS 7! z + 1 ℄i ! �env0V ; sto0�Using the 
ode translation fun
tion we get thatCDMT [[teambrain var x : type;CDMT ℄℄ p =LOAD 7 [SD℄ : PUSH 1 : ADD : SAVE 7 [SD℄ : CDMT [[CDMT ℄℄We 
an now make the following 
omputation sequen
e.hr;LOAD 7 [SD℄ : PUSH 1 : ADD : SAVE 7 [SD℄ : CDMT [[CDMT ℄℄; �; stoi .4hr00;CDMT [[CDMT ℄℄; �; sto00i .�hr0; �; �; sto0iWe get the �rst parts of the 
omputation by using the semanti
s of AM. We see that sto00 = sto[7 7! z+1℄as required (TEAMDECLS = 7 ). The last 
omputation is made by applying the indu
tion hypothesisto the premise, whi
h 
ompletes the proof.A.1.5 Private MemoryThe following lemma expresses the 
orre
tness of private memory variable de
larations.Lemma A.1.5 For all private memory variable de
larations we have thatif hDMT ; envV ; stoi ! (env0V ; sto0) then hr; CDMT [[DMT ℄℄ p; �; stoi . hr0; �; �; sto0iSo that state of the storage must be identi
al after 
omputation in the two semanti
s.Proof: We will 
ondu
t the proof of lemma A.1.5 by indu
tion on the shape of the derivation tree.The 
ase: [Dmt-private-empty℄We assume that h"; envV ; stoi !DMP (envV ; sto). Using the translation fun
tion we get that CDMP [[�℄℄ p =NOOP.Using the semanti
s of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiwhi
h 
ompletes the proof of this 
ase.The 
ase: [Dmt-private℄We assume that hprivate var x : type ;DMP ; envV ; stoi ! (; env0V ; sto0) be
ausehDMT ; envV [x 7! (z ; type)℄ ; sto[PRIVATEDECLS 7! z + 1 ℄i ! �env0V ; sto0�Using the 
ode translation fun
tion we get thatCDMP [[private var x : type;CDMP ℄℄ p =LOAD 8 [SD℄ : PUSH 1 : ADD : SAVE 8 [SD℄ : CDMP [[CDMP ℄℄ p98



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.2. PARAMETERSWe 
an now make the following 
omputation sequen
e.hr;LOAD 8 [SD℄ : PUSH 1 : ADD : SAVE 8 [SD℄ : CDMP [[CDMP ℄℄ p; �; stoi .4hr00;CDMP [[CDMP ℄℄; �; sto00i .�hr0; �; �; sto0iWe get the �rst parts of the 
omputation by using the semanti
s of AM. We see that sto00 = sto[8 7! z+1℄as required (PRIVATEDECLS = 8 ). The last 
omputation is made by applying the indu
tion hypothesisto the premise, whi
h 
ompletes the proof.A.2 ParametersThe 
orre
tness of formal parameters is expressed by the following lemma.A.2.1 FormalLemma A.2.1 For all formal parameters we have thatif hPF ; envV i ! (env0V ) then hr; CPF [[PF ℄℄ p; e; stoi . hr0; �; �; sto0iwhere the sta
k e 
ontains the a
tual parameter values, and where sto0 has the parameters stored at thelo
ations following r(NEXT ).Proof: To make this proof we will assume that there are the same amount of a
tual parameters as thereare formal parameters. We will prove lemma A.2.1 be indu
tion on the shape of the derivation tree.The 
ase: [Pf-formal parameters-empty℄We assume that h"; envV i !PF (envV ). Using the translation fun
tion we get that CPF [[�℄℄ p = NOOP.Using the semanti
s of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiSin
e there are no formal parameters then there are no a
tual parameters either. This 
ompletes theproof of this 
ase.The 
ase: [Pf-formal parameters℄We assume that hvar x : type;PF ; envV i !S env0V holds be
ausehPF ; envV [x 7! l℄ [next 7! new (l)℄i ! env0V .(whi
h is the premise)be
ause l = envV (next).Using the 
ode translation fun
tion we get thatCPF [[var x : type;PF ℄℄ p = SAVE 0 [NEXT ℄ : NEXT : CPF [[PF ℄℄99



A.2. PARAMETERS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONWe 
an now make the following 
omputation sequen
e.hr;SAVE 0 [NEXT ℄ : NEXT : CPF [[PF ℄℄; e; stoi .�hr00; CPV [[PF ℄℄ p; e0; sto00i .�hr0; �; �; sto0iWe see that sto00 = [l 7! v℄, and it follows from the 
omputation that the parameters are stored at the
orre
t lo
ations. The last 
omputation is made by applying the indu
tion hypothesis to the premise.This 
ompletes the proof.A.2.2 A
tualThe 
orre
tness of a
tual parameters is expressed by the following lemma.Lemma A.2.2 For all a
tual parameters we have thatif hPA; envV ; stoi ! (env0V ; sto0) then hr; CPA [[PF ℄℄ p; �; stoi . hr0; �; e; stoiwhere the sta
k e 
ontains the a
tual parameter values.Proof: We will prove lemma A.2.2 be indu
tion on the shape of the derivation tree.The 
ase: [Pf-a
tual parameters-empty℄We assume that h"; envV ; stoi !PF (envV ; sto). Using the translation fun
tion we get that CPA [[�℄℄ p =NOOP. Using the semanti
s of NOOP we get thathr ;NOOP; �; stoi . hr ; �; �; stoiSin
e there is no a
tual parameter then e = �. This 
ompletes the proof of this 
ase.The 
ase: [Pf-a
tual parameters℄We assume that hexp;PA; envV ; stoi !PA (env0V ; sto0) holds be
ausehPA; envV [next 7! new (l)℄ ; sto [l 7! v℄i ! �env0V ; sto0�be
ause l = envV (next).Using the 
ode translation fun
tion we get thatCPA [[ae;PA℄℄ p =CPA [[PA℄℄ : CA [[ae℄℄We 
an now make the following 
omputation sequen
e.hr;CPA [[PA℄℄ : CA [[ae℄℄; �; stoi .�hr00; CA [[ae℄℄; e0; stoi .�hr0; �; e; stoiThe �rst 
omputation is done by applying the indu
tion hypothesis on the premise and by using that we
an extend the 
ode base. It follows from the 
omputation that the a
tual parameters will be pla
ed onthe sta
k. 100



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.3. EXPRESSIONSA.3 ExpressionsA.3.1 Arithmeti
The 
orre
tness of the implementation of the arithmeti
 expressions in AWL is expressed by lemma A.3.1.Lemma A.3.1 For all arithmeti
 expressions ae we have thathr ; CA [[ae℄℄ ; �; stoi . hr; �; z; stoiwhere envP ; envV ; sto ` ae!ae z.Furthermore, all intermediate 
on�gurations of this 
omputation sequen
e will have a non-empty evalu-tation sta
k.Proof: The proof of lemma A.3.1 is done by stru
tual indu
tion on ae.The 
ase: [ae-lit℄Using the 
ode generation fun
tion CA;we have that CA [[n℄℄ p = PUSH n. From the semanti
s of AMwe have that hr ;PUSH n; �; stoi . hr0; �; z; stoiand sin
e n! z in the operational semanti
s for AWL, we have 
ompleted the proof for [ae-lit℄.The 
ase: [ae-var℄We have that CA [[x ℄℄ p = LOAD n [LS ℄, where LS is the register, whi
h points to the lo
al base addressof the 
urrent routine p, and where n = mlo
 (p; x) (the relative address of x inside p).Using the semanti
s of AM we have thathr ;LOAD n [LS ℄; �; stoi . hr0; �; sto (r (LS ) + z) ; stoiIn the operational semanti
s of AWL we have that x ! sto (envV (x)). Using the de�nition of LS andmlo
 we see that r(LS ) + z = envV (x), whi
h 
ompletes the proof of this 
ase.The 
ase: [ae-array℄We have that CA [[x [ae℄℄℄ p = CA [[ae℄℄ : PUSH n : ADD : LOADS [LS ℄where LS is the register, whi
h points to the lo
al base adress of the 
urrent routine p, and wheren = mlo
(p; x) is the relative adress of the �rst element of the array variable x inside p.We 
an make the 
omputation sequen
ehr ; CA [[ae℄℄ : PUSH n : ADD : LOADS [LS ℄ ; �; stoi .� hr0; �; sto (r (LS) + z1 + z2) ; stoi101



A.3. EXPRESSIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONwhere z1 = N [[n℄℄ and ae!ae z2The semanti
s of AWL states that x[ae℄ !ae sto (envV (x) + z2). Using the de�nition of LS and mlo
we see that r(LS ) + z = envV (x), whi
h 
ompletes the proof of this 
ase.The 
ase: [ae-
ommon memory variable℄Using the translation fun
tion we have thatCA [[
mem x ℄℄ = LOAD n [CM ℄where CM is the register pointing to the �rst 
ommon memory lo
ation and n = mlo
 (memory; x),where n is the relative address of x in the memory s
ope. When applying the semanti
s of AM we gethr ;LOAD n [CM ℄ ; �; stoi . hr 0; �; sto (r (CM ) + z) ; stoiIn the operational semanti
s of AWL we have that (
memx) !ae z1 where envV (x) = (integer; z1). andz1 = (COMMONBASE + z1 ).Using the de�nition of CM and mlo
 we see that r(CM )+z = z1, whi
h 
ompletes the proof of this 
ase.The 
ase: [ae-teambrain memory variable℄We have that CA [[tmem x℄℄ p = LOAD n [CTM ℄ where CTM is the register pointing to �rst teambrainmemory lo
ation for the 
urrent team and n = mlo
 (memory; x), where n is the relative address of x inthe memory variable s
ope. Using the translation fun
tion we get thathr ;LOAD n [CTM ℄ ; �; stoi . hr 0; �; sto (r (CTM ) + z) ; stoiSin
e tmem x!ae z1 where envV (x) = (integer; z2) andz1 = sto (teamLo
 (sto (CURRENTTEAM )) +TEAMALLOC + z2 )we need to show thatr (CTM ) + z = teamLo
 (sto (CURRENTTEAM )) +TEAMALLOC + z2The de�nition of teamLo
 spe
i�es that it will return the base storage lo
ation of a given team. Usingthat, the de�nition of CTM and z = z2, we 
an see that the above statement holds.The 
ase: [ae-private memory variable℄We have that CA [[pmem x ; ℄℄ p = LOAD n [CAM ℄where CAM is the register pointing to �rst private memory lo
ation for the 
urrent ant on the 
urrentteam and n = mlo
 (memory; x), where n is the relative address of x in the memory variable s
ope. Wethen have hr ;LOAD n [CAM ℄ ; �; stoi . hr 0; �; sto (r (CAM ) + z) ; stoi102



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.3. EXPRESSIONSSin
e pmem x!ae z1 where envV (x) = (integer; z2) andz1 = sto (antLo
 (sto (CURRENTTEAM ) ; sto (CURRENTANT)) + ANTALLOC + z2 )we need to show thatr (CAM ) + z = antLo
 (sto (CURRENTTEAM ) ; sto (CURRENTANT)) + ANTALLOC + z2The de�nition of antLo
 spe
i�es that it will return the base storage lo
ation of a given team and ant.Using that, the de�nition of CAM and z = z2, we 
an see that the above statement holds.The 
ase: [ae-random℄Using the 
ode translation fun
tion we get thatCA [[random(ae)℄℄ p = CA [[ae℄℄ : RANThis results in the 
omputation sequen
ehr; CA [[ae℄℄ : RAN; �; stoi . hr0;RAN; z1; stoi . hr; �; z2; stoiwhere 0 � z2 < z1The �rst 
omputation is made by applying the indu
tion hypothesis to ae and the se
ond by using thesemanti
s of RAN. It follows from the rule [ae-random℄ that this 
ompletes the proof.The 
ase: [ae-getProperty℄Using the 
ode translation fun
tion we haveCA [[getProperty(ae);℄℄ = CA [[ae℄℄ : LOADS [SD℄and we there have the 
omputation sequen
ehr ; CA [[ae℄℄ : LOADS [SD℄ ; �; stoi .�hr 0;LOADS [SD℄ ; z1 ; stoi .hr 00; �; z2 ; stoiTo make the �rst 
omputation we apply the indu
tion hypothesis to ae, and to make the se
ond we usethe semanti
s of LOADS. We see that z2 = sto(z1), and using the rule [ae-getProperty℄ we see that thisis the required result.The 
ase: [ae-par℄We have that CA [[(ae)℄℄ = CA [[ae℄℄.Applying the indu
tion hypothesis to ae we get thathr;CA [[ae℄℄ ; �; stoi .� hr0; �; z; stoi103



A.3. EXPRESSIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONSin
e (ae)!ae z the proof is 
omplete.The 
ase: [ae-add℄We have that CA [[ae1 + ae2 ℄℄ = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : ADDApplying the indu
tion hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSin
e we 
an extend the 
ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : ADD; �; stoi .� hr; CA [[ae1 ℄℄ : ADD; z2; stoi .�hr;ADD; z1 : z2; stoiWe now apply the transition rule for ADD, and gethr;ADD; z1 : z2; stoi .� hr; �; (z1 + z2); stoiSin
e ae1 + ae2 !ae (z1 + z2) in the semanti
s of AWL, the proof is 
omplete.The 
ase: [ae-sub℄We have that CA [[ae1 � ae2 ℄℄ = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : SUBApplying the indu
tion hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSin
e we 
an extend the 
ode base, we have thathr; CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : SUB; �; stoi .� hr; CA [[ae1 ℄℄ : SUB; z2; stoi .�hr;SUB; z1 : z2; stoiWe now apply the transition rule for SUB, and gethr;SUB; z1 : z2; stoi .� hr; �; (z1 � z2); stoiSin
e ae1 � ae2 !ae (z1 � z2) in the semanti
s of AWL, the proof is 
omplete.The 
ase: [ae-mult℄We have that 104



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.3. EXPRESSIONSCA [[ae1 � ae2 ℄℄ = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ :MULTApplying the indu
tion hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSin
e we 
an extend the 
ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ :MULT; �; stoi .� hr;CA [[ae1 ℄℄ :MULT; z2; stoi .�hr;MULT; z1 : z2; stoiWe now apply the transition rule for MULT, and gethr;MULT; z1 : z2; stoi .� hr; �; (z1 � z2); stoiSin
e ae1 � ae2 !ae (z1 � z2) in the semanti
s of AWL, the proof is 
omplete.The 
ase: [ae-div℄We have that CA [[ae1 =ae2 ℄℄ = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : DIVApplying the indu
tion hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSin
e we 
an extend the 
ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : DIV; �; stoi .� hr;CA [[ae1 ℄℄ : DIV; z2; stoi .�hr;DIV; z1 : z2; stoiWe now apply the transition rule for DIV, and gethr;DIV; z1 : z2; stoi .� hr; �; (z1=z2); stoiSin
e ae1 � ae2 !ae (z1=z2) in the semanti
s of AWL, the proof is 
omplete.The 
ase: [ae-rule
all℄We have that CA [[r (PA)℄℄ = CPA [[PA℄℄ : CALL n1 ;n2 : LOAD 0 [NEXT ℄This gives us the 
omputation sequen
e 105



A.3. EXPRESSIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONhr; CPA [[PA℄℄ : CALL n1 ;n2 : LOAD 0 [NEXT ℄; �; stoi .�hr;CALL n1 ;n2 : LOAD 0 [NEXT ℄; e; sto0i .�hr;LOAD 0 [NEXT ℄; �; sto0i .hr; �; z; sto0iWe get the �rst 
omputation by using lemma A.2.2. The se
ond 
omputation is made by using thesemanti
s of CALL and the pro
edure proto
ols de�ned in the last 
hapter, whi
h states (among otherthings) that after returning from a pro
edure, the a
tual parameters have been removed from the sta
k.The proto
ols also states that the return value is stored at lo
ation 0 relative to the address stored inNEXT , and using LOAD we therefore get the �nal 
omputation. We see that the storage has 
hangedwhi
h goes against the lemma - however sin
e we haven't updated NEXT the updated storage lo
ationwill be overwritten, making the 
hange irrelevant. This 
on
ludes the proof of lemma A.3.1.A.3.2 BooleanThe 
orre
tness of the implementation of the boolean expressions in AWL is expressed by the followinglemma.Lemma A.3.2 For all boolean expressions be we have thathr; CB [[be℄℄ ; �; stoi . hr; �; b; stoiwhere envV ; sto ` be!be bFurthermore, all intermediate 
on�gurations of this 
omputation sequen
e will have a non-empty evalu-tation sta
k.Proof: The proof of the lemma is done by stru
tual indu
tion on be.The 
ase: [be-lit℄Using the 
ode generation fun
tion we have that CB [[bl℄℄ = fTRUE;FALSEg.From the semanti
s of AWLAM we have thathr; CB [[bl℄℄ ; �; stoi . hr; �; b; stoiand sin
e bl! b in the operational semanti
s for AWL, we have 
ompleted the proof for [be-lit℄.The 
ase: [be-var℄We have that CB [[x ℄℄ p = LOAD n [LS ℄, meaning that this proof is analog to that of [ae-var℄.The 
ase: [be-array℄We have that CB [[x [ae℄℄℄ p = CB [[ae℄℄ : PUSH n : ADD : LOADS [LS ℄, meaning that this proof is ana-log to that of [ae-array℄.The 
ase: [be-
ommon memory variable℄ 106



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.3. EXPRESSIONSWe have that CB [[
mem x ℄℄ = LOAD n [CM ℄, meaning that this proof is analog to that of [be-
ommonmemory variable℄.The 
ase: [be-teambrain memory variable℄We have that CB [[tmem x ℄℄ p = LOAD n [CTM ℄, meaning that this proof is analog to that of [be-teambrain memory variable℄.The 
ase: [be-private memory variable℄We have that CB [[pmem x ; ℄℄ p = LOAD n [CAM ℄, meaning that this proof is analog to that of [ae-private memory variable℄.The 
ase: [be-getProperty℄Using the 
ode translation fun
tion we have CB [[getProperty(ae);℄℄ = CB [[ae℄℄ : LOADS [SD ℄, meaningthat this proof is analog to that of [ae-getProperty℄.The 
ase: [be-par℄We have that CB [[(ae)℄℄ = CB [[ae℄℄, meaning that this proof is analog to that of [ae-getProperty℄.The 
ase: [be-equals(ae)℄We have that CB [[ae1 == ae2 ℄℄ p = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : EQApplying the indu
tion hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSin
e we 
an extend the 
ode base, we have thathr; CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : EQ; �; stoi .� hr;CA [[ae1 ℄℄ : EQ; z2; stoi .�hr;EQ; z1 : z2; stoiWe now apply the transition rule for EQ, and gethr;EQ; z1 : z2; stoi .� hr; �; (z1 = z2); stoiSin
e ae1 � ae2 !ae (z1 = z2) in the semanti
s of AWL, the proof is 
omplete.The 
ase: [be-equals(be)℄We have that CB [[be1 == be2 ℄℄ p = CB [[ae2 ℄℄ : CB [[ae1 ℄℄ : EQ, meaning that this proof is analog to that of[be-equals(ae)℄.The 
ase: [be-equals(de)℄ 107



A.3. EXPRESSIONS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONWe have that CB [[de1 == de2 ℄℄ p = CB [[de2 ℄℄ : CB [[de1 ℄℄ : EQ, meaning that this proof is analog to thatof [be-equals(ae)℄.The 
ase: [be-not-equals(ae)℄We have that CB [[ae1 ! = ae2 ℄℄ p = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : EQ : NEGApplying the indu
tion hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSin
e we 
an extend the 
ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : EQ : NEG; �; stoi .� hr; CA [[ae1 ℄℄ : EQ : NEG; z2; stoi .� hr;EQ : NEG; z1 : z2; stoiWe now apply the transition rules for EQ and NEG, and gethr;EQ; z1 : z2; stoi .� hr;NEG; (z1 = z2); stoi .� hr; �; (z1 6= z2); stoiwhi
h 
ompletes the proof.The 
ase: [be-not-equals(be)℄We have that CB [[be1 ! = be2 ℄℄ p = CA [[be2 ℄℄ : CA [[be1 ℄℄ : EQ : NEG, meaning that this proof is analog tothat of [be-not-equals(ae)℄.The 
ase: [be-not-equals(be)℄We have that CB [[de1 ! = de2 ℄℄ p = CA [[de2 ℄℄ : CA [[de1 ℄℄ : EQ : NEG, meaning that this proof is analog tothat of [be-not-equals(ae)℄.The 
ase: [be-greater-than℄We have that CB [[ae1>ae2 ℄℄ p = CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : LE : NEGApplying the indu
tion hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSin
e we 
an extend the 
ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : LE : NEG; �; stoi .� hr;CA [[ae1 ℄℄ : LE : NEG; z2; stoi .� hr;LE : NEG; z1 : z2; stoiWe now apply the transition rules for LE and NEG, and get108



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDShr;LE; z1 : z2; stoi .� hr;NEG; (z1 > z2); stoi .� hr; �; (z1 � z2); stoiwhi
h 
ompletes the proof.The proofs of the 
onstru
ts [be-lower-than℄, [be-greater-than-or-equals℄ is analogous.The 
ase: [be-and℄We have that CB [[be1and be2 ℄℄ p = CB [[be2 ℄℄ : CB [[be1 ℄℄ : ANDApplying the indu
tion hypothesis to ae1 and ae2 results inhr;CA [[ae1 ℄℄; �; stoi .� hr0; �; z1; stoi andhr0; CA [[ae2 ℄℄; �; stoi .� hr00; �; z2; stoiSin
e we 
an extend the 
ode base, we have thathr;CA [[ae2 ℄℄ : CA [[ae1 ℄℄ : AND; �; stoi .� hr;CA [[ae1 ℄℄ : AND; z2; stoi .� hr;AND; z1 : z2; stoiWe now apply the transition rules for AND we gethr;AND; z1 : z2; stoi .� hr;AND; (z1 ^ z2); stoiwhi
h 
ompletes the proof.The proof of [be-or℄ is analogous.A.3.3 Dire
tionAll proofs of dire
tion expressions are analogous to the proofs of arithmeti
 expressions.A.4 CommandsThe following theorem expresses, that if a exe
ution of S terminates in a state in the semanti
s of AWL,then it will also terminate in the semanti
s of the abstra
t ma
hine AM with the resulting states beingequal. This also applies the other way around. The theorem also expresses that if the exe
ution of Sfrom one state loops in one of the semanti
s then it will also loop in the other.Theorem A.4.1 For every statement S of AWL we have that SAWL [[S℄℄ = SAM [[S℄℄The theorem is proved in two stages expressed by lemma A.4.2 and lemma A.4.3.Lemma A.4.2 For every statement S of AWL and stores sto and sto0, we have thatif hS; stoi ! sto0 then hr; CS [[S℄℄ ; �; stoi .� hr0; �; �; sto0i109



A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONIf the exe
ution of S from the store sto terminates in the big step semanti
s for AWL, then the exe
utionof the translated 
ode from the store sto will also terminate in the semanti
s for AWLAM and the resultingstores will be equal.Proof: The proof of lemma A.4.2 is 
ompleted by indu
tion on the shape of the derivation tree forhS; stoi ! sto0. So we will prove the lemma for ea
h 
ommand in AWL.The 
ase: [s - assign℄We asume that hx = exp; stoi ! sto0 where sto0 = sto[l 7! v℄ , l = envV (x) and exp! v.Using CS we get that CS [[x = exp℄℄ p = CE [[exp℄℄ : SAVE n [LS ℄where n = mlo
(p; x). From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti
 rules of AM we gethr0;SAVE n [LS℄; v; stoi . hr00; �; �; sto [(r(LS) + z℄) 7! viSin
e we have that envV (x) = r(LS ) + z this 
ompletes the proof.The 
ase: [S assign array℄We assume that hx[ae℄ =exp;; stoi ! sto0where sto0 = sto [(l + z1) 7! v℄ , ae! z1 and envV (x) = (type; l; z2) and 0 � z1 < z2We have that CS [[x [ae℄ = exp; ℄℄ p = CE [[exp℄℄ : CA [[ae℄℄ : PUSH n : ADD : SAVES [LS ℄From CE and CA we gethr;CE [[exp℄℄ : CA [[ae℄℄ ; �; stoi .� hr00; CA [[ae℄℄ ; v ; stoi .� hr000; �; z1 : v; stoiApplying PUSH we get hr000;PUSH n; z1 : v; stoi . hr0000; �; z3 : z1 : v; stoiwhere z3 = mlo
 (p; x). We now apply ADDhr0000;ADD; z3 : z1 : v; stoi . hr00000; �; z4 : v; stoiFinally applying SAVES [LS ℄ we get 110



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDShr00000;SAVES [LS℄ ; z4 : v; stoi . hr0; �; �; sto0iSin
e l = z3, z1in the semanti
s of AWL equals z1 in the semanti
s of AM, the proof is 
omplete.The 
ase: [s - 
omp℄Using the semanti
s of AWL we have that hS1S2; stoi ! sto0 be
ause hS1; stoi ! sto00 and hS2; sto00i !sto0. Using CS we get that CS [[S1S2 ℄℄ = CS [[S1 ℄℄ : CS [[S2 ℄℄We apply the indu
tion hypothesis to the premises and get that
r; CS [[S1 ℄℄ ; �; sto� .� hr00; �; �; sto00iand
r00; CS [[S2 ℄℄ ; �; sto� .� hr0; �; �; sto0iSin
e we 
an extend the 
ode 
omponent we get that
r; CS [[S1℄℄ : CS [[S2 ℄℄ ; �; sto� .� 
r00; CS [[S2℄℄ ; �; sto00� .� hr0; �; �; sto0iwhi
h 
ompletes the proof.The 
ase: [S-if-true℄We assume that hif(be)fS1gelsefS2g; stoi !S sto0 be
ause be!be b , B [[b℄℄ = tt and hS1; stoi !S sto0.From the implementation we getCS [[if (be)fS1 gelsefS2 g℄℄ =CB [[be℄℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2For boolean expressions we have that 
r; CB [[be℄℄ ; � ; sto� . 
r0; � ; b; sto�Applying this we get
r; CB [[be℄℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; � ; sto� .�hr0;JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; b; stoiUsing the rule for JUMPF n and assuming that b = tt we have thathr0;JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; b; stoi .hr00;CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; stoiUsing the rule for CS [[S1℄℄ we gethr00;CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; stoi .�hr000;JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; sto0iApplying the rule for JUMP n we get 111



A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONhr000;JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; sto0i .hr0; �; �; sto0iSin
e hS1; stoi !S sto0 the proof is 
omplete.The 
ase: [S-if-false℄This proof is analog to [S-if-true℄.The 
ase: [S-while-true℄We asume that hwhile(be)fSg; stoi ! sto00 be
ause be!be tt , hS; stoi ! sto00 and hwhile(be)fSg; sto00i !sto0.From our 
ode translation fun
tions we have thatCS [[while(be)fSg℄℄ =LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2The 
omputation sequen
e of the translated 
ode results inDr1; LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S℄℄ : JUMP n1 : LABEL n2 ; �; stoE.Dr2; CB [[be℄℄ : JUMPF n2 : CS [[S℄℄ : JUMP n1 : LABEL n2 ; �; stoE.�Dr3; JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; tt; stoE.Dr4; CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoE.Dr5; CS [[S ℄℄ : LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoEWe get the last 
omputation by using the semanti
s of JUMP. We now apply the indu
tion hypothesis onthe premises of the AWL semanti
s for [while-true℄. So hS; stoi ! sto00 and hwhile(be)fSg; sto00i ! sto0results inhr5; CS [[S ℄℄; �; stoi .� hr6; �; �; sto00i andhr6;LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; sto00i . hr7; �; �; sto0iSin
e we 
an extend the 
ode 
omponent we get that
r5; CS [[S ℄℄ : LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; sto�.�
r6; LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; sto00�.�hr7; �; �; sto0iThis 
ompletes the proof for [S-while-true℄.The 
ase: [S-while-false℄This proof is analog to the proof of [S-while-true℄The 
ase: [S-rule
all℄We assume hr(PA);; stoi !S sto4 be
ause 112
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PF ; env0V [next 7! new (l)℄�! env00V
PA; env00V [next 7! new (l)℄ ; sto�! �env3V ; sto0�
DV ; env3V ; sto0�!DV �env4V ; sto00�
DA; env4V ; sto00�!DA �env5V ; sto3�
S; sto3�!S sto4where l = envV (next) and envP (r) = (S; PF ; env0V ; DV ; DA). From our 
ode translation fun
tion wehave that CS [[r (PA)℄℄ = CPA [[PA℄℄ : CALL plo
(r); parameter 
ountUsing the semanti
s of CALL and the de�ned proto
ols we 
an rewrite our 
omputation sequen
e toCPA [[PA℄℄ : CALL plo
(r); parameter 
ount. =CPA [[PA℄℄ : CPF [[PF ℄℄ : CDV [[DV ℄℄ : CDA [[DA℄℄ : CS [[S ℄℄ : RETURNWe 
an now make the 
omputation sequen
ehr ; CPA [[PA℄℄ : CPF [[PF ℄℄ : CDV [[DV ℄℄ : CDA [[DA℄℄ : CS [[S ℄℄ : RETURN; �; stoi.
r 0;CS [[S ℄℄ ; �; sto3 �
r00; �; �; sto4�We make the �rst 
omputation using the other proofs in this 
hapter. To make the last 
omputation weapply the indu
tion hypothesis to the premise 
S; sto3�!S sto4, whi
h 
ompletes the proof.The proof of [S-endturn℄ and [S-pro
ess℄ is analogous.The 
ase: [S - 
ommon memory assign℄We assume that h
mem x=exp;; stoi ! sto0 where sto0 = sto[l 7! v℄ , l = envV (x) and exp! v.Using CS we get that CS [[
mem x = exp℄℄ = CE [[exp℄℄ : SAVE n [CM ℄where n = mlo
(memory; x). From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti
 rules of SAVE we gethr0;SAVE n [CM ℄; v ; stoi . hr00; �; �; sto [(r(CM) + z℄) 7! viUsing the de�nition of CM we see that envV (x) = r(CM) + z.The 
ase: [S - team memory assign℄We assume that htmem x=exp;; stoi ! sto0 where sto0 = sto[l 7! v℄ , l = envV (x) and exp! v.Using CS we get that 113



A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONCS [[tmem x = exp℄℄ = CE [[exp℄℄ : SAVE n [CTM ℄where n = mlo
(memory; x). From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti
 rules of AWLAM we gethr0;SAVE n [CTM ℄; v ; stoi . hr00; �; �; sto [(r(CTM ) + z) 7! v℄iUsing the de�nition of CTM we see that envV (x) = r(CTM ) + z.The 
ase: [S - private memory assign℄We assume that hpmem x=exp;; stoi ! sto0 where sto0 = sto[l 7! v℄ , l = envV (x) and exp! v.Using CS we get that CS [[pmem x = exp℄℄ = CE [[exp℄℄ : SAVE n [CAM ℄where n = mlo
(memory; x). From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti
 rules of AWLAM we gethr;0 SAVE n [CAM ℄; v ; stoi . hr00; �; �; sto [(r(CAM ) + z) 7! v℄iUsing the de�nition of CAM we see that envV (x) = r(CAM) + z.The 
ase: [S-return℄We assume that hreturn exp; ; stoi ! sto0 where sto0 = sto[l 7! v℄, l = envV (return) and exp! v.Using CS we get that CS [[return exp; ℄℄ = CE [[exp℄℄ : SAVE 0 [LS ℄From the expression lemmas we have
r; CE [[exp℄℄ ; �; sto� .� hr0; �; v; stoiand from the semanti
 rules of AWLAM we gethr0;SAVE 0 [LS ℄; v; stoi . hr00; �; �; sto [r(LS) 7! v℄iUsing the de�nition of LS and the de�ned proto
ols, we see that envV (return) = r(LS ).The 
ase: [S-skip℄We assume that hskip;; stoi ! sto. Using CS we get that114



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDSCS [[skip℄℄ p = NOOPFrom the rule for NOOP we have that hr;NOOP; �; stoi . hr0; �; �; stoi , whi
h 
ompletes the proof.The 
ase: [S-setProperty℄We assume that hsetProperty(ae; exp);; stoi ! sto0 where sto0 = sto[l 7! v℄, exp ! v1, ae ! z1 andz1 = l.We have that CS [[setProperty(ae; exp);℄℄ = CE [[exp℄℄ : CA [[ae℄℄ : SAVES [SD℄Applying CE and CA we gethr; CE [[exp℄℄ : CA [[ae℄℄; �; stoi .� hr00;CA [[ae℄℄; v2; stoi .� hr000; �; z2 : v2; stoiUsing the semanti
s of SAV ES we gethr000;SAVES [SD℄ ; z2 : v2; stoi . hr0; �; �; sto0iSin
e l = z1 = z2 and v1 = v2 the proof is 
omplete.This 
on
ludes the proof of lemma A.4.2.Lemma A.4.3 For every 
ommand S of AWL and stores sto and sto0, we have thatif hr; CS [[S℄℄ ; �; stoi .k hr0; �; e; sto0i then hS; stoi ! sto0So if the exe
ution of the 
ode for S from a storage s terminates, then the AWL semanti
s of S from swill terminate in a state being equal to the storage of the terminal 
on�guration.Proof: We will prove lemma A.4.3 by indu
tion on the length k of the 
omputation sequen
e on AM. Ifk = 0 then the result holds be
ause CS[[S ℄℄ = � is impossible. So we assume that it holds for k � k0 andwill prove that it holds for k = k0 + 1. We make a 
ase study on the 
ommand S.The 
ase: x = exp;We have that CS [[x = exp; ℄℄ = CE [[exp℄℄ : SAVE n [LS ℄ , so we assume thathr; CE [[exp℄℄ : SAV E n [LS℄; �; stoi .k0+1 hr0; �; e; sto0iSin
e we 
an split the instru
tion sequen
e into two we have thathr;CE [[exp℄℄ ; �; stoi .k1 hr00; �; e00; sto00iandhr; SAV E n [LS℄; e00; sto00i .k2 hr0; �; e; sto0i115



A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONwhere k1 + k2 = k0 +1. From the expression lemmas we get that sto00 = sto and e00 = v where exp! v .Using the semanti
s of SAVE we see that sto0 = sto[(r(LS ) + z) 7! v℄. It follows from [s - assign℄ thathx = exp;; stoi ! sto0, whi
h 
ompletes the proof.The 
ase: x [ae℄ = exp;We have that CS [[x [ae℄ = exp; ℄℄p = CE [[exp℄℄ : CA [[ae℄℄ : PUSH n : ADD : SAVES [LS ℄We 
an then make the 
omputation sequen
ehr;CE [[exp℄℄ : CA [[ae℄℄ : PUSH n : ADD : SAVES [LS ℄; �; stoi .k0+1 hr0; �; e; sto0iSin
e we 
an split the 
ode 
omponent up we gethr;CE [[exp℄℄; �; stoi .k1 
r5; �; e4; sto5�
r5; CA [[ae℄℄; e4; sto5� .k2 
r4; �; e3; sto4�
r4;PUSH n; e3; sto4� .k3 
r3; �; e2; sto3�
r3;ADD; e2; sto3� .k4 
r2; �; e1; sto2�
r2;SAVES [LS℄ ; e1; sto2� .k5 hr0; �; e; sto0iwhere k1 + k2 + k3 + k4 + k5 = k0 + 1Sin
e CE [[exp℄℄, CA [[ae℄℄, PUSH and ADD do not 
hange the storage, we have that sto = sto5 = sto4 =sto3 = sto2. We also have that e4 = v, e3 = z1 : v, e3 = z2 : z1 : v , e1 = z3 : v and e = �.Sin
e we have that sto0 = sto[(l + z1) 7! v℄ where envV (x) = (type; l; z3) and 0 � z1 < z3 this 
ompletesthe proof.The 
ase: S1S2We have that CS [[S1S2 ℄℄ = CS [[S1 ℄℄ : CS [[S2 ℄℄, so we assume thathr; CS [[S1 ℄℄ : CS [[S2 ℄℄; �; stoi .k0+1 hr0; �; e; sto0iSin
e we 
an split the instru
tion sequen
e into two we have thathr;CS [[S1 ℄℄; �; stoi .k1 hr0; �; e0; sto0i andhr00;CS [[S2 ℄℄; e0; sto00i .k2 hr0; �; e; sto0iwhere k1 + k2 = k0 + 1 , e0 = � and e = �.We 
an now apply the indu
tion hypothesis to hr; CS [[S1 ℄℄; �; stoi .k1 hr0; �; e0; sto0i be
ause k1 � k0hS1; stoi !S sto00Be
ause we have hr00; CS [[S2 ℄℄; e0; sto00i .k2 hr0; �; e; sto0i and k2 � k0 we 
an now apply the indu
tionhypothesis one more time and get. 116



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDShS2; sto00i !S sto0This gives us hS1S2; stoi !S sto0 as required. The proof is now 
omplete.The 
ase: if(be)fS1gelsefS2g trueWe have that CS [[if (b)fS1 gelsefS2 g℄℄ =CB [be℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2We assume thathr;CB [be℄ : JUMPF n1 : CS [[S1 ℄℄ : JUMP n2 : LABEL n1 : CS [[S2 ℄℄ : LABEL n2 ; �; stoi .k0+1 hr0; �; e; sto0iSin
e we 
an split up the 
ode 
omponent we gethr; CB [[be℄℄; �; stoi .k1 hr0000; �; e000; sto0000ihr0000;JUMPF n1; e000; sto0000i .k2 hr000; �; e00; sto000ihr000;CS [[S1 ℄℄; e00; sto000i .k3 hr00; �; e0; sto00ihr00;JUMP n2; e0; sto00i .k4 hr0; �; e; sto0iwhere k1 + k2 + k3 + k4 = k0 + 1 and k2; k4 = 1.Sin
e CB [[be℄℄ and JUMPF does not 
hange the storage, we have that sto0000 = sto000 and sto00 = sto0.Likewise CS [[S1 ℄℄ and JUMP does not 
hange the evaluation sta
k so we have that e00 = e0 = e = �. Weassume that e000 = tt .Sin
e k3 � k0 we 
an apply the indu
tion hypothesis to this 
omputation and then we have thathS1; stoi ! sto0The rule [S-if-true℄ gives the required hif(be)fS1gelsefS2g; stoi ! sto0. The proof of if(be)fS1gelsefS2gfalseis analogous.The 
ase: while(be)fSg trueThe 
ode for the while loop isCS[[while(be)fSg℄℄= LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2and we therefore assume thathr;LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoi .k0+1 hr0; �; �; sto0iUsing the de�nition of JUMP we 
an rewrite the 
omputation sequen
e in the following maner:117



A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONhr;LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoi .hr00;CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoi .hr000;JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; tt; stoi .hr0000;CS [[S ℄℄ : LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; stoi .k0�2hr0; �; �; sto0iWe 
an now split up our 
ode 
omponent, and we gethr0000;CS [[S℄℄ ; �; stoi .k1 hr00000; �; �; sto00i and (1)hr00000;LABEL n1 : CB [[be℄℄ : JUMPF n2 : CS [[S ℄℄ : JUMP n1 : LABEL n2 ; �; sto00i .k2 hr0; �; �; sto0i (2)where k1 + k2 = k0 � 2. Sin
e k1 � k0 we 
an apply the indu
tion hypothesis to the 
omputationsequen
e (1). We therefore get that hS; stoi ! sto0. And sin
e k2 � k0we 
an also apply the indu
tionhypothesis to the 
omputation sequen
e (2) and we get that hwhile(be)fSg; sto00i ! sto0. Using the rule[S-while-true℄ we get hwhile(be)fSg; stoi ! sto0 as required.The proof of the 
ase while(be)fSg false is analogous.The 
ase: skip;We have that CS [[skip;℄℄ =NOOP. That gives us the 
on�gurationhr;NOOP; �; stoi . hr0; �; e; sto0iSin
e e = � and sto0 = sto and hskip;; stoi !S sto the proof is 
omplete.The 
ase: setProperty(ae; exp);We have that CS [setProperty(ae; exp)℄ = CE [[exp℄℄ : CA [[ae℄℄ : SAVES [SD℄This give us the 
on�gurationhr;CE [[exp℄℄ : CA [[ae℄℄ : SAVES [SD℄; �; stoi .k0+1 
r1; �; �; sto1�We 
an split this into hr;CE [[exp℄℄; �; stoi .k1 
r2; �; e1; sto2�
r2; CA [[ae℄℄; e1; sto2� .k2 
r3; �; e2; sto3�
r3;SAVES [SD℄ ; e2; sto3� .k3 Dr0 ; �; e; sto0EWe have that k0 + 1 = k1 + k2 + k3, e0 = v1; e2 = z1 : v1 and e = �.From [S-getProperty℄ we have that ae ! z2 = l and exp ! v2 . Be
ause z1 = z2 and v1 = v2 this
ompletes the proof.The 
ase: 
mem x = exp;We have that 118



APPENDIX A. PROVABLE CORRECT IMPLEMENTATION A.4. COMMANDSCS [[
mem x=exp;℄℄ = CE [[exp℄℄ : SAVE n [CM ℄so we assume that hr;CE [[exp℄℄ : SAVE n [CM ℄; �; stoi .k0+1 hr0; �; e; sto0iSin
e we 
an split the instru
tion sequen
e into two we havehr;CE [[exp℄℄; �; stoi .k1 hr00; �; e00; sto00i andhr;SAVE n [CM ℄; e00; sto00i .k2 hr0; �; e; sto0iwhere k1 + k2 = k0 + 1. From the expression lemmas we get that sto00 = sto and e00 = v where exp! v. Using the semanti
s of SAVE we see that sto0 = sto[(r(CM) + z) 7! v℄. It follows from [S-
ommonmemory assign℄ and the de�nition of CM that h
mem x=exp;; stoi ! sto0, whi
h 
ompletes the proof.The proofs of tmem and pmem are analogous.The 
ase: return exp;We have that CS [[return exp;℄℄ = CE [[exp℄℄ : SAVE 0 [LS ℄so we assume that hr;CE [[exp℄℄ : SAVE 0 [LS ℄; �; stoi .k0+1 hr0; �; e; sto0iSin
e we 
an split the instru
tion sequen
e into two we havehr;CE [[exp℄℄; �; stoi .k1 hr00; �; e00; sto00i andhr;SAVE 0 [LS ℄; e00; sto00i .k2 hr0; �; e; sto0iwhere k1 + k2 = k0 + 1. From the expression lemmas we get that sto00 = sto and e00 = v where exp! v. Using the semanti
s of SAVE we see that sto0 = sto[r(LS) 7! v℄. It follows from [S-return℄ and thede�nition of LS that hreturn exp;; stoi ! sto0, whi
h 
ompletes the proof.The 
ase: r (PA) ;We have that CS[[r (PA) ; ℄℄ = CPA [[PA℄℄ : CALL n1 ;n2where n1 = plo
(r) and n2 = parameter 
ount, so we assume thathr; CPA [[PA℄℄ : CALL n1 ;n2 ; �; stoi .k0+1 hr0; �; e; sto0iWe 
an split up the 
ode 
omponent, so there must be a 
on�guration on the form hr00; �; e00; sto00i su
hthat 119



A.4. COMMANDS APPENDIX A. PROVABLE CORRECT IMPLEMENTATIONhr;CPA [[PA℄℄; �; stoi .k1 hr00; �; e00; sto00i andhr00;CALL n1 ;n2 ; e00; sto00i .k2 hr0; �; e; sto0iwhere k1 + k2 = k0 + 1. Using lemma A.2.2 we see that e00 
ontains the a
tual parameters, if there areany. Using the semanti
s of CALL we 
an rewrite the last 
omputation.hr00;CPF [[PF ℄℄ : CDV [[DV ℄℄ : CDA [[DA℄℄ : CS [[S ℄℄ : RETURN; e00; sto00i .k2hr0; �; e; sto0iThis sequen
e 
an also be split up, so there must be a 
on�guration on the form hr000; �; e000; sto000i, su
hthat hr00;CPF [[PF ℄℄; e00; sto00i .k3 hr000; �; e000; sto000i andhr000;CDV [[DV ℄℄ : CDA [[DA℄℄ : CS [[S ℄℄ : RETURN; e000; sto000i .k4 hr0; �; e; sto0iwhere k3 + k4 = k2. Using lemma A.2.1 we see that e000 = � and that sto000 = sto00. Again we 
an split upthe 
ode 
omponent, so there must be a 
on�guration on the form 
r4; �; e4; sto4� su
h thathr000;CDV [[DV ℄℄; e000; sto000i .k5 
r4; �; e4; sto4� and
r4;CDA [[DA℄℄ : CS [[S ℄℄ : RETURN; e4; sto4� .k6 hr0; �; e; sto0iwhere k5 + k6 = k3. Using lemma A.1.5 we see that e4 = e000 = �. Again we 
an split up the 
ode
omponent, so there must be a 
on�guration on the form 
r5; �; e5; sto5� su
h that
r4; CDA [[DA℄℄; e4; sto4� .k7 
r5; �; e5; sto5� and
r5; CS [[S ℄℄ : RETURN; e5; sto5� .k8 hr0; �; e; sto0iwhere k7 + k8 = k6. Using lemma A.1.2 we see that e5 = e4 = �. On
e again we split up the 
ode
omponent, so there must be a 
on�guration on the form 
r6; �; e6; sto6� su
h that
r5;CS [[S ℄℄ :; e5; sto5� .k9 
r6; �; e6; sto6� and
r6;RETURN; e6; sto6� .k10 hr0; �; e; sto0iwhere k9 + k10 = k8. We 
an now apply the indu
tion hypothesis to S, whi
h gives
S; sto5�! sto6 and e6 = �Using the rule [S-rule
all℄ we get that hr(PA);; stoi !S sto0, whi
h 
ompletes the proof.
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Appendix BSableCC Generated FileThe following is the �le that SableCC uses to generate our s
anner and parser along with the tree, andthe in
luded tree walkers.Pa
kage awl.
ompiler.parser;Helpersletter = ( ['a'..'z'℄ | ['A'..'Z'℄ );digit = ['0'..'9'℄;true = 'true'; false = 'false';left = 'left'; right = 'right';up = 'up'; down = 'down';ht = 0x0009; lf = 0x000a;ff = 0x000
; 
r = 0x000d; sp = ' ';Tokenst_world = 'world';t_main = 'main';t_rule = 'rule';t_turn = 'turn';t_anttype= 'anttype';t_endturn = 'endturn';t_pro
ess = 'pro
ess';t_getproperty = 'getProperty';t_setproperty = 'setProperty';t_
reateteam = '
reateTeam';t_
reateant = '
reateAnt';t_random = 'random';t_return = 'return';t_skip = 'skip';t_if = 'if';t_else = 'else';t_while = 'while';t_
ommon = '
ommon';t_private = 'private';t_teambrain = 'teambrain';t_
mem = '
mem';t_pmem = 'pmem';t_tmem = 'tmem';t_var = 'var';t_array = 'array'; 121



APPENDIX B. SABLECC GENERATED FILEt_eof = 'eof';t_or = 'or';t_and = 'and';t_integer= 'integer';t_boolean = 'boolean';t_dire
tion = 'dire
tion';t_integer_literal = digit*;t_boolean_literal = ( true | false );t_dire
tion_literal = (left | right | up | down);t_identifier = letter (letter | digit)*;t_lpar = '(';t_rpar = ')';t_lbra
e = '{';t_rbra
e = '}';t_lbra
ket = '[';t_rbra
ket = '℄';t_semi
olon = ';';t_
olon = ':';t_
omma = ',';t_dot = '.';t_assign = '=';t_bang = '!';t_gt = '>';t_lt = '<';t_eq = '==';t_ne = '!=';t_le = '<=';t_ge = '>=';t_plus = '+';t_minus = '-';t_star = '*';t_slash = '/';t_newline = 
r | lf | 
r lf;t_whitespa
e = (sp | ht | ff)*;t_
omment = '#' (digit | letter | ' ')*;Ignored Tokenst_newline, t_whitespa
e, t_
omment;Produ
tions/* Program */program = world;main = t_main t_lbra
e team_de
laration*variable_init* array_init* 
ommands t_rbra
e;world = t_world t_lpar [size℄:t_integer_literal[
omma1℄:t_
omma [ants℄:t_integer_literal[
omma2℄:t_
omma [foods℄:t_integer_literal t_rpar t_lbra
e
ommon_de
l* teambrain_de
l* private_de
l*ntb_de
laration* tb_de
laration* ant_type_de
laration*maint_rbra
e;/* Commands*/
ommands = 
ommand*;
ommand ={assign} t_identifier t_assign expression t_semi
olon |{rule
all} t_identifier t_lpar a
tual_parm_listt_rpar t_semi
olon | 122



APPENDIX B. SABLECC GENERATED FILE{arrayassign} t_identifier t_lbra
ket[index℄:expressiont_rbra
ket t_assign [value℄:expression t_semi
olon |{if} t_if t_lpar [
ondition℄:expression t_rpar[lbra
e1℄:t_lbra
e [
om℄:
ommands [rbra
e1℄:t_rbra
et_else [lbra
e2℄:t_lbra
e[else_
om℄:
ommands [rbra
e2℄:t_rbra
e |{while} t_while t_lpar expressiont_rpar t_lbra
e 
ommands t_rbra
e |{endturn} t_endturn t_identifiert_lpar a
tual_parm_list t_rpar t_semi
olon |{return} t_return expression t_semi
olon |{skip} t_skip t_semi
olon |{
mem} t_
mem t_identifiert_assign expression t_semi
olon |{tmem} t_tmem t_identifiert_assign expression t_semi
olon |{pmem} t_pmem t_identifier t_assign expressiont_semi
olon |{pro
ess} t_pro
ess t_lpar [team℄:expression[
omma1℄:t_
omma [ant℄:expression [
omma2℄:t_
ommat_identifier t_rpar t_semi
olon |{setproperty} t_setproperty t_lpar[index℄:expression t_
omma [value℄:expressiont_rpar t_semi
olon |{
reateant} t_
reateant t_lparexpression t_rpar t_semi
olon;/* Memory */
ommon_de
l = t_
ommon variable_init;teambrain_de
l = t_teambrainvariable_de
laration t_semi
olon;private_de
l = t_privatevariable_de
laration t_semi
olon;/* De
larations*/ntb_de
laration ={noreturn} ntb_de
laration_noreturn |{return} ntb_de
laration_return;ntb_de
laration_noreturn = t_rule t_identifiert_lpar formal_parm_list t_rpar t_lbra
evariable_init* array_init* 
ommands t_rbra
e;ntb_de
laration_return = t_rule t_identifiert_lpar formal_parm_list t_rpar t_
olonsimple_type t_lbra
e variable_init*array_init* 
ommands t_rbra
e;tb_de
laration = t_turn t_identifier t_lparformal_parm_list t_rpar t_lbra
e variable_init*array_init* 
ommands t_rbra
e;return_type = t_
olon simple_type;formal_parm = variable_de
laration t_semi
olon;formal_parm_list = formal_parm*;a
tual_parm = expression t_semi
olon;a
tual_parm_list = a
tual_parm*;ant_type_de
laration = t_anttype t_identifiert_lbra
e variable_init* array_init* 
ommands t_rbra
e;team_de
laration = t_
reateteam t_lpart_identifier t_rpar t_semi
olon; 123



APPENDIX B. SABLECC GENERATED FILE/* Variable De
larations*/variable_init = variable_de
larationt_assign expression t_semi
olon;array_init = array_de
laration t_assign expressiont_semi
olon;variable_de
laration = t_var t_identifiert_
olon simple_type;array_de
laration = t_array t_identifiert_lbra
ket t_integer_literal t_rbra
ket t_
olon simple_type;simple_type ={integer} t_integer |{boolean} t_boolean |{dire
tion} t_dire
tion;/* Expressions*/primary_expression ={par} t_lpar expression t_rpar |{
onstant} literal |{identifier} t_identifier |{array} t_identifier t_lbra
ket expression t_rbra
ket |{fun
tion} t_identifier t_lpar a
tual_parm_list t_rpar |{
mem_identifier} t_
mem t_identifier |{tmem_identifier} t_tmem t_identifier |{pmem_identifier} t_pmem t_identifier |{getproperty} t_getproperty t_lpar expression t_rpar |{random} t_random t_lpar expression t_rpar;expression = or_expression;or_expression ={or} and_expression t_or or_expression |{bubble} and_expression;and_expression ={and} eq_expression t_and and_expression |{bubble} eq_expression;eq_expression ={equals} rel_expression t_eq eq_expression |{notequals} rel_expression t_ne eq_expression |{bubble} rel_expression;rel_expression ={greater} add_expression t_gt rel_expression |{lower} add_expression t_lt rel_expression |{greaterequals} add_expression t_ge rel_expression |{lowerequals} add_expression t_le rel_expression |{bubble} add_expression;add_expression ={plus} mult_expression t_plus add_expression |{minus} mult_expression t_minus add_expression |{bubble} mult_expression;mult_expression ={mult} unary_expression t_star mult_expression |{div} unary_expression t_slash mult_expression |{bubble} unary_expression;unary_expression ={minus} t_minus primary_expression |{bang} t_bang primary_expression |{bubble} primary_expression;/* Literal*/ 124



APPENDIX B. SABLECC GENERATED FILEliteral ={boolean} t_boolean_literal |{integer} t_integer_literal |{dire
tion} t_dire
tion_literal;
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