Shredding and Querying XML Data Using an RDBMS

Dennis Plougman Buus
Department of Computer
Science
Aalborg University

dbuus@cs.auc.dk

ABSTRACT

This article addresses the problems of querying and retriev-
ing XML data stored in a relational database. We discuss
insertion of differently structured XML documents into a
database with a constant relational schema by using a sim-
ple and general shredding strategy. Closely related to this,
and discussed in this article as well, is round-tripping which
allows us to return all or a fragment of the data in XML
format. We also consider querying the relational data using
XML Path Language and XML Query language. Further-
more, we detail an implementation of XPath azis steps as
SQL statements, and outline an approach for implementing
the central FLWOR construct in the XQuery language.

1. INTRODUCTION

The Extensible Markup Language (XML) [5] is a widely used
standard for storing and exchanging data, especially through
the Internet. It features an intuitive structure, which makes
it easily readable for humans, and invites even large, com-
plex XML datasets to be represented in a single file.

Although native XML databases [18] are built from scratch
for the specific purpose of storing and querying XML doc-
uments, they are not yet commonly used. Since much re-
search has been done in the area of relational databases [17]
compared to native XML ones, they are more widely applied
and better performing software is available. Thus, it would
be interesting to investigate the possibilities of storing XML
data in a relational database using a general strategy and
retrieving data from that relational database in XML for-
mat. The querying and retrieval of data from the database
should be based on XML standards, so that from the out-
side, it would be opaque that the database is actually rela-
tional and not a native XML database. In doing so, we take
advantage of the strengths of relational databases, such as
indices, while preserving an XML view of the data.

Doing this requires implementation of a process known as
shredding. This is the process of parsing an XML document
and inserting the results into a relational database manage-
ment system (RDBMS). In our case, we have chosen to do
this with simplicity and generality in mind. Also, we wanted
to be able to insert several XML documents into the same
database without first having to examine the structure of
the XML document and most likely needing to adjust the
relational database schema accordingly. Reverting the rela-
tional data into an XML document is called round-tripping
(for a definition, see Section 3.2). This is highly depen-

Thomas Pryds Lauritsen
Department of Computer
Science
Aalborg University

pryds@cs.auc.dk

Jakob Rutkowski Olesen
Department of Computer
Science
Aalborg University

jro@cs.auc.dk

dent on the implementation of the shredder, of course, so a
round-tripper can never exist without a coherent shredder.

However, since converting XML data into another repre-
sentation just to convert it back to its original XML rep-
resentation is rather pointless, we would like to insert an-
other step in-between. XML Query Language (XQuery) [3]
is a language designed for querying XML data. It features
XML Path Language (XPath) [8] which is a mechanism for
uniquely describing the path of XML elements in a docu-
ment, and FLWOR ezpressions which let you form actual
queries on XML data. The implementation of the needed
subset of these, together with a shredder and a round-tripper,
allows us to perform queries on our relational database in a
way that one would do on XML data in its pure representa-
tion and receive the results as an XML document.

The article is structured in the following manner. We start
out by describing preliminary knowledge in Section 2, cov-
ering the basics of XML and the parsing of it. Section 3
describes the shredding and round-tripping processes, in-
cluding the algorithms we utilise. Querying using XQuery,
XPath, and FLWOR and the implementation hereof is ad-
dressed in Section 4. The article is summed up by an eval-
uation in Section 5, and finally we give our conclusion is
Section 6. Acknowledgements and related work are men-
tioned in Section 7 and in Section 8

2. PRELIMINARIES

In this section we give an introduction to XML and to how
basic documents are created. Furthermore, we present a
section on how to parse XML documents.

2.1 The XML Data Model

XML is a language based on tags, in quite the same man-
ner as Hypertext Markup Language (HTML) [21]. There are
however some differences. XML is used to describe data,
and focuses on content, as opposed to HTML, which de-
scribes how data should be displayed. In XML there are no
predefined tags, so tag names are defined by the author of
the document. These things result in a quite simple data
model, which offers some basic building blocks, from which
more complex models can be built.

The basic parts of XML are elements, attributes and char-
acter data. An element will have a start tag and an end
tag. Everything in-between the start and end tag, is the
content of the element. Element content can be simple con-

tent, mixed content, element content, or empty content. An
element with simple content contains only character data,
mixed content contains both character data and elements,
element content contains only elements, and empty content
refers to an empty element, which means that it contains no
information.

A sample XML document is shown in Figure 1. The docu-
ment describes a list of two books. The first book is written
by John Doe, has the title The 1life of John Doe, and con-
tains an attribute ref with the value 23462.

It is required that elements are properly nested, which means
that no element may be ended before all of its contained
elements are ended. This hierarchical order of an XML doc-
ument enables us to consider it as a tree. The top level
element, which contains the entire document, is called the
root node, and the content of the top level element is con-
sidered as the root node’s subtree. Furthermore the root
node is the ancestor of all its content, and the content is
referred to as its descendants. This holds for any node at
any level which has a subtree. Nodes which are at the same
level in the tree and share the same parent are called sib-
lings. Further, elements can also have attribute data, which
must be included in the start tag. These will be represented
as children in the tree.

In Figure 1 the root node of the document is <books>, and
its descendants are <book>, <author> and <title> elements.

<?xml version="1.0" encoding="UTF-8" 7>
<books>
<book ref="23462">
<author>John Doe</author>
<title>The Life of John Doe</title>
</book>
<book ref="23463" edition="2nd">
<author>Jane Doe</author>
<title>Great Cookie Recipes</title>
</book>
</books>

Figure 1: Example of an XML document.

2.2 Parsing XML Data

Reading and working with an XML document requires a
parser. We considered two different methods of parsing,
namely Simple API for XML (SAX) [1] and Document Ob-
ject Model (DOM) [20]. SAX is actually just a lexer. It
enables you to work on the different parts of the document
as it is being sequentially read by the lexer. DOM is a true
parser in the sense that it builds a parse tree, which can
then be manipulated. DOM lets you work on a tree struc-
ture, but the tree must be kept in memory, which might
cause problems when handling large XML documents. We
have chosen to work with SAX in this project since we need
to work with large documents.

3. SHREDDING AND ROUND-TRIPPING

This section will explain the concepts and our use of both
shredding and round-tripping. We will explain how we have
mapped XML data to the database, and how we imple-
mented it.

3.1 Shredding

Shredding is the process of parsing an XML document and
inserting the result into an RDBMS. For this there are sev-
eral strategies, of which [9,15] describe a few. Some of these
strategies propose a relational schema be constructed from a
DTD referred to by the XML document that is to be shred-
ded. Our strategy focuses on having a general relational
schema, usable for any XML document. That is, no mat-
ter the DTD or XML Schema of a document (or whether
the document even has a defined schema), the relational
schema should be able to contain the contents of the docu-
ment. Also, we want to be able to store several, differently
structured documents in the same relational database.

3.1.1 Representing the XML Data

As previously stated, an XML document consists of nodes
nested into each other. Hence, it can be represented as a
tree structure where the nodes represent XML start tags
and leaf nodes represent character data. The tree repre-
sentation of Figure 1 is thus shown in Figure 2. This tree
ignores attributes; the reason for this is explained later in
this section.

bogks
% | N
title _ author _ title author

CDATA CDATA CDATA CDATA

Figure 2: The tree representation of the sample XML doc-
ument in Figure 1.

Notice that two tags are always separated by character data,
which might consist of whitespace only. In this figure, these
whitespace-only character data elements are represented by
the underscore character (_). For shredding purposes, how-
ever, we can safely disregard these. This is illustrated in
Figure 3.

3.1.2 Path encoding

The tree representation in Figure 3 can be used to uniquely
identify each node and its path by using a Dewey-like classi-
fication system [19] where all child nodes of any given node
are assigned a (for that set of nodes) unique integer from 1
to n. For each node in the tree, its identification is retrieved
by concatenating these integers (separated by slashes) from
the root of the tree, following the path to the node in ques-
tion. As an example, the encircled node in Figure 3 has the
path identification “1/2/1/1".

There is a potential problem with this representation, though.
In order to be able to store several integers and slashes; an

1

bogks

K

author

CDATA
Figure 3: Tree representation disregarding whitespace-only
character data.

. 1 2
title author

CDATA' CDATA'

obvious data type would be a string/varchar. However, if
one tries to sort a set of strings, they will be returned in lex-
ical order, whereas for this purpose we really want them re-
turned according to their position in the parse tree. That is,
“1/10/1” will be returned before “1/9/1”, although it ought
to come in after. Also, there are potential problems con-
cerning the length of the string if one tries to determine the
tree depth by measuring the string length instead of making
sure to count the number of substrings separated by slashes.

A naive solution to this is to prefix each section between
the slashes by zeroes, so that for instance “1/10/1” becomes
“000001,/000010/000001”. This would indeed solve the sort-
ing problem but it introduces a couple of other problems,
namely that an XML element can then only contain a cer-
tain number (in the case of this example, one million) of
children, but more importantly, the zeroes take up a lot of
space. Using the string length of the example above, for any
set of sibling nodes, all nodes from 1 to 9 yield an overhead
of 3 &, nodes 10 to 99 yield an overhead of %, etc.

An optimal solution would therefore be required to take up
no more space than necessary, it should be indefinitely scal-
able, and allow sorting. Inspired by the UTF-8 [2] encoding
of Unicode, the encoding of the following user-defined data
type satisfies the above requirements. A path step, i.e. an
integer, is encoded in chunks of one byte, where the first 7
bits of a byte hold the actual integer or part of it, and the
last bit indicates whether the integer continues into the next
byte. This is illustrated in Figure 4.

| Range || Byte 1 | Byte 2 | Byte 3 |
0to2"—1 zrxxrxrx0
27 to 211 -1 rrrxxxxxrl | zrxrxrzrx0
2% t0 221 — 1 || zazzzraxl | zerzzrel | zezzzaz0

Figure 4: Encoding of a path step (an integer) of a path
identification.

Always being able to extend a chunk of bytes by an extra
byte allows us to hold infinitely large integers, and thereby
infinitely many siblings. Defining a data type that holds
infinitely many path steps in the same manner would then
allow us to hold infinitely deep trees. A path step of value

27 — 1 = 127 takes up three bytes using the naive solution
but only one byte using the optimal one. Likewise the value
21 _ 1 = 16383 takes up five and two bytes, respectively.
In order to allow sorting, one would have to define a custom
comparison function for the data type.

3.1.3 Relational schema

As mentioned, our relational schema is very general, and
thus it consists of only two tables; one for XML nodes, and
one for XML tag attributes. The first table (Figure 5) has
three rows; one for the path ID, a char-column specifying
the type (tag element or character data) of a given node,
and a column holding the contents of a node. For element
nodes, the content is the name of the tag, and for character
data nodes, it is the data itself. We use the pathID column
as primary key for the table, since this is unique for every
node.

Nodes
pathID | type | contents
1 tag books
1/1 tag book
1/1/1 tag author

1/1/1/1 | cdata | John Doe

1/1/2 tag title

1/1/2/1 | cdata | The Life of John Doe
1/2 tag book

1/2/1 tag author

1/2/1/1 | cdata | Jane Doe

1/2/2 tag title

1/2/2/1 | cdata | Great Cookie Recipes
Figure 5: Relational schema for nodes and example data
from shredding the document in Figure 1.

The attribute table (Figure 6) holds attributes from element
nodes, if such exist. According to the XML Recommenda-
tion [6], the attributes of a tag need not appear in any par-
ticular order, so we can disregard them when constructing
the tree and assigning node path IDs. In other words, we
can think of attributes as an association list where all we
need to store, besides the attribute itself, is its association
to a given node. Therefore, a column containing the path
ID of the owner-node and a column holding the name of the
attribute form a joint primary key. pathID is a foreign key
to the pathID column in the nodes table. In addition, we
need to store the contents of the attribute in a column, of
course.

Attributes
pathID | attrName | contents
1/1 ref 23462
1/2 ref 23463
1/2 edition 2nd

Figure 6: Relational schema for attributes and example data
from shredding the document in Figure 1.

3.1.4 Shredding Algorithm

A SAX parser [10] enables us to specify what should hap-
pen when certain events occur during the parsing of an XML
document. In our case, these events are the following: Pars-
ing is initiated, a start-tag is met, an end-tag is met, and
character data (excluding character data in attributes) is

met. The algorithm in Listing 1 uses a stack of integers
which represents the path ID of the currently reached node.

// INITIAL ACTIONS:
Push document ID to stack

// START TAG:
Assign current content of stack as path ID for
tag node
6 Save attributes, if any, using content of stack
as reference
7 Push 1 to stack

o W e

9 // END TAG:
10 Pop an element from stack
11 Increase top element of stack by one

13 // CHARACTER DATA:

14 Assign current content of stack as path ID for
character data node

15 Increase top element of stack by one

Listing 1: Algorithm for shredding.

To reach our goal of being able to store several documents in
the same relational database, we initially push a document
ID to the stack, uniquely identifying the document (consec-
utive numbers will do). This will render the first integer of
all path IDs of that document uniquely identifyable. Notice
also that nothing is stored in the database upon meeting an
end tag. This does not mean, however, that we lose infor-
mation. The positions of an XML document’s end tags are
implicitly stored in the tree representation and thereby in
the path identification so that we can correctly revert the
relational data into an XML document.

3.2 Round-tripping

In Computer Science generally, the term “round-tripping”
refers to the concept of converting one representation into
another one and then back again, [22]. In this article, how-
ever, we use it only to refer to the process of converting
shredded relational data back into XML documents (i.e. we
do not count the shredding process as a part of round-

tripping).

3.2.1 Round-tripper Algorithm

In order for the round-tripper algorithm presented in this
section to correctly regenerate an XML document (or a
fragment of it), it must receive tuples from the relational
database sequentially, ordered according to path ID. List-
ing the tuples in this order is equivalent to traversing the
XML tree in-depth, and B-tree [12] indices guarantee this
sort order. We can utilise the fact that this is exactly the
order in which the tags should appear in the resulting XML
document, and we can use the path ID to extract end tags
in the XML document.

As Listing 2 illustrates, the key to inserting end tags is a
stack that holds the nodes from the root of the tree to the
current node. By also remembering the previously seen path
ID in another variable, we can compare the tree depth of the
previously seen node to the current one and thereby decide
whether we need to prefix the start tag, that we are going to

set, with one or more end tags. When leaving a leaf node, no
matter how many levels you ascend, you will only descend
by one level (see Figure 7). Therefore, if the previously seen
node was a leaf node of character data, the number of needed
end tags is the difference between the two tree depths. If
the previous node was an XML tag, then it must be closed
as well, and you will have to add another end tag from the
stack.

bogks "

book book

ey 1 2 . 1 2
tifle author tifle author

CDATA' CDATA' CDATA' CDATA'

Figure 7: Traversing a tree.

An iteration of the algorithm ends by writing the actual cur-
rent node to the document as either a start tag or character
data. Note, that at this point the algorithm must know the
potential attributes of a start tag already. As previously
stated, the order of these is not significant, though.

3.2.2 Canonical XML Equivalence

After (correctly) shredding and round-tripping, you end up
with two XML documents (input and output) that are log-
ically equivalent but may differ in byte-wise comparison.
Since attributes are not required to appear in any particular
order, the ordering of these may differ in the two documents.
Also character representations may differ; the documents
may be expressed in different character sets and throughout
the documents different kinds of character escaping may be
used.

Canonical XML [4] is a syntax for unambiguously express-
ing an XML document, and it may be used to show the cor-
rectness of a shredded and round-tripped document since it
must represent the same logical structure as its source doc-
ument. After canonicalizating both the input and output
documents, their canonical forms may be compared byte-
by-byte, and if they prove identical the original documents
are said to be equivalent (see Figure 8).

4. QUERY PROCESSING

This section deals with the topic of processing queries over
XML documents. Two issues will be examined, namely
XML Path Language [8] and XML Query Language [3].
XML Path Language (XPath) is a language in it self, but
also an integrated part of XML Query Language (XQuery).
We start this section by introducing XPath, examining a
number of issues regarding it’s implementation, and then go
on to do the same for XQuery.

1 For all node tuples in alphanumerical order, ordered by Path ID

2 If current node is closer to the root or at the same level as the previously seen node
3 Repeat (previous node path depth - current node path depth) times

4 Pop node from stack and write it as XML end tag

5 If previously seen node was of type tag

6 Pop an extra node from stack and write it as XML end tag

7 If type of current node is tag

8 Write current node as XML start tag including its attributes, if any
9 Push current node unto stack

10 Else if type of current node is character data

11 Write out data as text

12 While stack is not empty

13 Pop node from stack and write it as XML end tag

Listing 2: Algorithm for round-tripping.

Original | Shredding/round-tripping| Output
XML | ———> | xwm

$Canonicalization $Canonicalization

Canonical Equivalent? Canonical
xML | <k—PD> | xmL

Figure 8: Canonical XML equivalence.

4.1 XML Path Language

As mentioned, XML documents may be represented as trees
of nodes. XML Path Language is used to select specific
nodes in such a tree. An example XPath expression which
selects the names of all authors who have written a book,
from the XML document in Figure 1, might look like this:

//book/author

An XPath expression is resolved in a step-wise manner, from
left to right. The / element is a step divider, and an expres-
sion starting with a / refers to an absolute path, begin-
ning from the root node. The presence of // in an expres-
sion refers to all descendant nodes in a document from a
given point. It is also possible to refer to specific attributes
by using @, for example //@ref, which selects all ref at-
tributes in the document, and boolean predicates, written
like [author="John Doe"], may also be used in an XPath
expression to further narrow the results.

Central to XPath is the notion of axes. An axis defines a re-
lation between a single node and a number of related nodes.
The available axes are shown in Figure 9. In the example
expression above, we used the abbreviated notation, which
does not contain explicit axis notation. The unabbreviated
version of our example, however, would be:

/descendant-or-self::book/child: :author

A construct such as child: :author is an example of a sin-
gle axis step. An axis step consists of an axis name and a

ancestor:: ancestor-or-self::
attribute:: child::
descendant:: | descendant-or-self::
following:: following-sibling::
namespace: : parent::
preceding:: preceding-sibling::
self::

Figure 9: XPath axes.

node test. The axis name denotes the relationship between
the resulting set of nodes and a context node, and the node
test filters the results. Further on in this article we use two
special node tests; text() and node(). text() simply se-
lects all text nodes, and node() selects any type of node
that an XML document may have. Every axis step must,
obviously, include an axis name. In the abbreviated nota-
tion, the axis child:: is implied whenever an axis name
is not specified. //book is the abbreviated notation for
descendant-or-self: :book.

Strictly speaking, the correct abbreviation of //book is:

/descendant-or-self::node()/child: :book

However, for this example the unabbreviated XPath expres-
sion described above is sufficient.

In the example above, the individual steps are:

descendant-or-self: :book - This selects every element in
the document which is a book. In this first axis step of the
expression, the context node is the root node, and therefore
descendant-or-self:: evaluates to every element in the
document. The node test filters out every node which is not
a book.

child: :author - This step selects every node which is an
author and a child of one of the nodes in the result set of
the previous step.

The the elements resulting from this example query would
be:

<author>John Doe</author>
<author>Jane Doe</author>

Conceptually, each XPath axis step is evaluated on the set of
results from the previous step. More accurately, the results
of one step each become the context node for the next step,
which is run once for each context node. For the first step,
the context node is always the root node. This step-wise
evaluation lends itself well to an implementation where we
construct the different possible step operators as individual
components which may be run in a chain to perform queries.

4.1.1 Implementing XPath

The fact that our path IDs are Dewey encoded, means that
they carry with them information about the entire ances-
try of the node. Having this information within each node
provides us with excellent opportunities for locating nodes
along the axes. Therefore, the axis steps may be reduced to
pattern matching on the string representation of the Dewey
encoded path IDs. What follows is a list of the axes, with
a description of their implementation and the actual SQL
statements that may be used as building blocks when im-
plementing an XPath evaluator. These procedures include
a c¢_node, which is the path ID of the context node, and a
nodeTest, which is used to limit results to those nodes which
match the node test. These SQL statements may be used
as the bodies in a set of functions stored in the database for
convenient access. The statements assume the table layout
described in section 3.1.3.

e self:: - we return the context node.

SELECT * FROM nodes
WHERE pathID = c¢_node
AND contents = nodeTest

e parent:: - we remove the last element from the path
ID of the context node and select the node which
matches the resulting path ID. Removing the last ele-
ment of a context node path ID such as "000001/000003"
is equivalent to moving up one level in the syntax tree,
thus selecting the parent of the context node.

SELECT * FROM nodes
WHERE pathID = parent_name(c_node)
AND contents = nodeTest

Note: parent_name() is a stored function which re-
moves the last 7 characters from a path ID stored us-
ing the naive solution for Dewey encoding described in
Section 3.1.2. It is coded thus:

parent_name (¢_ node){ RETURN LEFT(c_node, LENGTH(c_node)

-7}

e ancestor-or-self:: - in this procedure we make use
of a function is_prefix(substr, str) to select all
nodes whose path ID are a prefix of the path ID of
the context node.

SELECT * FROM nodes
WHERE is_prefix(pathid, c¢_node)
AND contents = nodeTest

The body of the is_prefix(substr, str) function is:

is_prefix(substr, str){
IF LOCATE(substr, str) = 1
RETURN TRUE
ELSE
RETURN FALSE
END IF
}

LOCATE() is a built in MySQL function which returns
the position of the first occurrence of a substring within
a string. If the path ID of a node being considered is
a substring at position 1 of the path ID of the context
node, then the node is an ancestor-or-self::. Most,
if not all, SQL implementations have a similar built in
function.

e ancestor:: - we evaluate this axis in much the same
way as ancestor_or_self (), except we use the parent
of the context node in the argument for is_prefix()

SELECT * FROM nodes
WHERE is_prefix(pathid, parent_name(c_node))
AND contents = nodeTest

e attribute:: - we select all entries from the attribute
table where the path ID matches that of the context
node.

SELECT * FROM attributes
WHERE pathid = c¢_node
AND contents = nodeTest

e child:: - we select all nodes whose path IDs are a
concatenation of the path ID of a context node and one
additional path element(one forward slash and ezactly
6 characters). The underscore matches exactly one
character when used with the LIKE operator.

SELECT * FROM nodes
WHERE pathid LIKE CONCAT(C__nOde,) ’)
AND contents = nodeTest

e descendant:: - we select all nodes whose path IDs are
a concatenation of the path ID of the context node and
an arbitrary number of additional path elements. The
percent is a wildcard matching one or more characters
when used with the LIKE operator.

SELECT * FROM nodes
WHERE pathid LIKE CONCAT(c_node, /%)
AND contents = nodeTest

e descendant-or-self:: - same as above, adding the
context node to the result.

SELECT * FROM nodes

WHERE pathid (LIKE CONCAT(c_node, ’/%’)
OR pathid = c¢_node)

AND contents = nodeTest

e following:: - we select all nodes whose path IDs
are alphanumerically greater than that of the context
node.

SELECT * FROM nodes
WHERE pathid > c¢_node
AND contents = nodeTest

e following-sibling:: - as above, limiting the results
to nodes whose parent ids are the same as the parent
of the context node.

SELECT * FROM nodes

WHERE pathid > c¢_node

AND parent_name(c_mode) = parent_name(pathid)
AND contents = nodeTest

e preceding:: - we select all nodes whose path IDs
are alphanumerically smaller than that of the context
node.

SELECT * FROM nodes
WHERE pathid < c¢_node
AND contents = nodeTest

e preceding-sibling:: - as above, limiting the results
to nodes whose parent ids are the same as the parent
of the context node.

SELECT * FROM nodes

WHERE pathid < ¢_node

AND parent_name(c_mode) = parent_name(pathid)
AND contents = nodeTest

e namespace:: - our implementation omits this axis.

4.2 XML Query Language

XML Query Language (XQuery) is a language similar to
SQL. It is used to query XML documents, and shares the
same data model as XPath. In this section, we first pro-
vide an introduction to FLWOR expressions (pronounced
“Hower”), which are the fundamental building blocks of many
interesting XQuery expressions, after which we detail our
implementation.

4.2.1 FLWOR Expressions

XQuery contains a query construct known as FLWOR ex-
pressions. Its structure is akin to the SELECT-FROM-WHERE
construct in SQL, and its name is formed from the first let-
ters in the key words of the construct, namely for, let,
where, order by, and return.

An example of a FLWOR expression which returns the title
of every book written by “John Doe” from our example XML
document in Figure 1 is shown in Figure 10.

for $book in //book
let $title := $book/title
where $book[author="John Doe"]
order by $title
return
<book>
{ $title }
</book>

Figure 10: An example of a FLWOR expression.

In this example, the for clause binds the result of the expres-
sion “//book” to the variable $book, and for each book the
let clause binds the title to the $title variable. The where
clause filters out any node where the author is not “John

Doe”, and the order by clause sorts the results alphabeti-
cally by title. Finally, the return clause returns a fragment
of XML with the title enclosed by “<book></book>” tags.
The result of running this query on our example XML doc-
ument (Figure 1) is:

<result>
<book>
<title>The Life of John Doe</title>
</book>
</result>

On the conceptual level, FLWOR expressions follow the data
flow model outlined in Figure 11. Their evaluation may be
described as a process of step-wise refinement.

FOR/LET Clauses
List of tuples
of bound variables

WHERE Clauses
Pruned list of tuples
of bound variables

ORDER BY Clauses

Ordered list of tuples
of bound variables

RETURN Clauses
Instance of XML
Query data model

Figure 11: Stages of FLWOR evaluation

The stages of this data flow model may be outlined thus:

e The for clauses bind the results of expressions to vari-
ables, creating a stream of tuples. Each tuple in the
stream contains the variable binding of one of the items
in the result of the expression with which it is associ-
ated. A let clause adds the entire result of its eval-
uation to each of the tuples created by for clauses, if
such exist, otherwise it will create a single tuple.

e The stream of tuples is subjected to the where clause.
This clause filters the tuple stream according to a con-
ditional statement. Only tuples for which the state-
ment holds true will survive. This pruned list of tu-
ples then serves as the input for the next step in the
evaluation:

e The order by clause applies an ordering to the filtered
tuples.

e The return clause is responsible for returning the re-
sult of the FLWOR expression as XML. For each tuple
in the stream, the return clause constructs the appro-
priate fragment of XML, based on the bindings in the
tuple. Since return must output valid XML, results
are packaged inside <result></result> tags to ensure
that they have a root node.

In the rest of this section, we examine some interesting de-
tails regarding the for/let stage of FLWOR evaluation.

As we have seen, the for and let clauses in a FLWOR
expression both bind the result of an expression to a variable
name, albeit in slightly different ways. The for clause binds
each element in a result to the variable, iteratively, whereas
the let clause binds the entire result to the variable. To
illustrate the differences between for and let we present
two example queries:

for $i in (1,2,3)
return <tuple>{$i}</tuple>

The query binds the result of the expression (1,2,3) to the
variable $i, iteratively. This creates a number of tuples,
each of which contains the binding of a single item in the
result to the variable. The resulting tuples are illustrated in
the output of this query:

<result>
<tuple>1</tuple>
<tuple>2</tuple>
<tuple>3</tuple>

</result>

If we write a similar query, this time using let, the result is
quite different.

let $i := (1,2,3)
return <tuple>{$i}</tuple>

The 1let clause binds the entire result of the expression to the
variable $i, without iteration. Therefore, the query yields
just a single tuple:

<result>
<tuple>1 2 3</tuple>
</result>

In cases where there are more than one for clause in the
FLWOR expression, the resulting tuples are the Cartesian
product of each variable assigned in a for. Consider the

query:

for $i in (1,2)
for $j in (3,4)
return <tuple>{$i},{$j}</tuple>

As before, each variable is iteratively bound to the evalua-
tion of its associated expression. For each iteration of the
$i variable, a tuple is created for each iteration of the $j
variable. The resulting tuples are therefore:

<result>
<tuple>1,3</tuple>

<tuple>1,4</tuple>

<tuple>2,3</tuple>

<tuple>2,4</tuple>
</result>

As mentioned above, when a let clause is included along
with a for clause, the binding of its variable is added to
every tuple. The presence of the let clause does not add to
the number of tuples.

for $i in (1,2)
let $j := (3,4)
return <tuple>{$i},{$j}</tuple>

This query creates one tuple for each binding of the for-
bound variable $i. It then adds the binding of the let-
bound variable $j to each of these tuples. The tuple stream
created by this query is then:

<result>
<tuple>1,3 4</tuple>
<tuple>2,3 4</tuple>
</result>

4.2.2 Implementing FLWOR

In this section we explore some interesting issues regarding
the implementation of FLWOR expressions on our shredded
XML documents. We examine issues particular to each of
the stages of the conceptual data flow model in the previous
section. Moving from the conceptual model to an imple-
mentation that may be run on our shredded data within an
RDBMS requires some adaptation.

Thetor and1et clauses

Central to the concept of FLWOR expressions is the afore-
mentioned tuple stream, containing the variables bound in
for and let clauses. This stage of FLWOR evaluation
presents the greatest challenges. First, the tuple stream
itself will be represented by a table containing one column
for each variable. Second, the concept of iteratively bound
variables needs to be adapted to the data model of relational
databases. The solution is to represent each variable as a
table, containing each item in the evaluation of the expres-
sion associated with the variable. Thus, a variable $i bound
in a for clause such as this:

for $i in (1,2,3)

... may be represented by the following table:

R=c3

The next challenge is in regards to scope. For each for and
let clause, the variables bound in any previous for or let
must be available for use. To illustrate this issue, consider
this example XML document:

<books>

<book id="1">
<author>AuthorA</author>
</book>

<book id="2">
<author>AuthorB</author>
<author>AuthorC</author>
<author>AuthorD</author>
</book>

<book id="3">

</book>

</books>

Suppose one enters a query starting with these for clauses:

for $b in //book
for $a in $b/author

The point of this query is to create a set of tuples, each tuple
containing the binding of an instance of a book and one of
its authors. The evaluation of the expression “$b/author”,
associated with the $a variable, is clearly dependant on the
evaluation of the expression “//book”, associated with the $b
variable. Therefore, our goal is to create our tuple stream
as a table containing the following tuples:

| $b | $a |
Bookl | AuthorA
Book2 | AuthorB
Book2 | AuthorC
Book2 | AuthorD

Note that Bookl refers to the <book id="1"> element, and
AuthorA refers to the <author> element containing the text
“AuthorA”. In the actual implementation, the fields in this
table will contain the equivalent path IDs instead. Concep-
tually, the selection of an element contains the entire con-
tents, including all descending nodes. However, we choose
to only store a single path ID with which to represent an ele-
ment from our database, since we can easily select the entire
contents when needed, with the help of our implementation
of the XPath axis descendant-or-self::.

In order to create the correct tuple stream, we must start by
evaluating the expression “//book”, associated with the $b
variable. For each iteration of the three books we must then
branch out and iterate over the evaluation of the expression
in the next for clause. Each evaluation of the expression
$b/author differs for each book, in both value and number
of results.

For the purpose of generating the initial tuple stream, we
propose the algorithm in Listing 3. We assume that each
for and let clause binds a single variable to an expression.
These expressions are accessed through an array $expr[]
of a datatype that holds the variable name, the associated
expression, and a type flag indicating whether the binding
is a for or a let clause. The array is indexed by the or-
der in which the variable bindings appear in the FLWOR
expression. In practise, this access to the expressions could
be implemented in a number of ways.

The filltable()function takes a $scope_tuple argument.
This argument is a tuple containing the variable bindings
that may be used in processing the current expression, thus
the scope. The other argument of the function, $expr_num,
is the means by which we move on to the next for/let
clause in the $expr[] array each time we perform another
recursive function call.

Furthermore, our algorithm makes use of a function which
we have named binder (). This binder() function is the
mechanism that binds the result of an expression to a vari-
able by creating the a table which represents one variable.
Its basic operation is to run our XPath evaluator on the ex-
pression it recieves as an argument and enter the results into
a single-column table. The result returned by the binder ()
function differs for for and let clauses. for-bound variables
are returned as a table containing one tuple for each item in
the evaluation of its associated expression. let-bound vari-
ables are returned as a table containing just a single tuple
which holds the entire evaluation of the associated expres-
sion. binder() also takes a $scope_tuple argument. If the
expression being evaluated requires the value of a previously
bound variable, then binder () retrieves this value from the
$scope_tuple.

In the body of the filltable() function, we create a ta-
ble designated $return_table, which is used to store the
results fetched from the recursive function calls as they are
made. This table has one column for every variable binding
stored in $expr[]within the interval [$expr_num...<last
$expr_num>]. We then call binder () with the current ex-
pression and the scope tuple. After receiving a result from
binder (), we make recursive calls to filltable() for each
tuple in this result, in order to join our scope tuple with
the results of the next for/let clause, and add this to
the $return_table. Each tuple resulting from binder ()
is also used as the $scope_tuple in these recursive calls to
filltable(). At the end of the execution of a filltable()
call, we return the resulting table, which contains the tuples
that the calling function needs to join with its own scope
tuple.

Thewnere clause

After creating the initial tuple stream as described above,
the where clause may be applied. The where clause con-
tains a conditional statement that must evaluate to true
in order for the tuple in question to survive. It is neces-
sary to perform additional XPath or XQuery processing be-
forehand, in order to fully resolve a clause such as “where
$book [author="John Doe"]”, or any other expression that
includes additional path steps or even full XQuery state-
ments. For instance, in this example the current iteration of
$book could contain the path ID “1/2/42”. We would then
have to evaluate “child: :author/child: :text ()” with the
node “1/2/42” as the context node in order to obtain a value
to compare to the string “John Doe”.

Theorder by clause

At this point we will be ready to apply ordering to the
stream. In this step, we might also need to perform ad-
ditional XPath evaluations in order to retrieve string values
to sort by. For example, in the case of an order by clause
such as “order by $b/title”, we would need to evaluate

filltable($scope_tuple, $expr_num){
$result := binder ($scope_tuple,
for all $tuple in $result

insert into $return_table the values:
return $return_table

N o U A W e

create $return_table with one column for every binding in $expr[$exprnum.
$expr[$expr_numl)

..<last $exprnum>]

$scope_tuple joined with filltable($tuple, $expr_num + 1)

Listing 3: Our algorithm for generating the tuple stream.

“child::title/child::text()” on each node in the tuple
stream and order the stream by these results.

Thereturn clause

Upon reaching the return statement, the tuple stream is
ready for output. The return statement iterates over each
of the records in the final tuple stream and returns the de-
sired output once for each of these. In this step, also, we
are still required to perform lookups. If, for instance, the
result stored in a variable $book is the path ID of a book
element and this variable is included in the return state-
ment, then the output string needs to be the entire con-
tents of the element. Within our implementation, we would
perform a descendant-or-self::node() operation with the
book node as the context node in order to receive a com-
plete set of nodes that we can send to our round-tripper.
The round-tripper would then return the appropriate XML
fragment to insert in place of the variable in each iteration
of the return statement.

5. EVALUATION

In this section we evaluate our implementation in general,
and make comparisons to other studies, with different ap-
proaches.

5.1 Database schemas

Our approach to creating the relational schema is quite sim-
ilar to that in [9] called Edge. In the original Edge, path IDs
are stored through references to parent nodes, whereas we
store a full path ID for each tuple in the database. Using
the path ID encoding enables us to identify the path and
the depth of a given node immediately, whereas references
to parent nodes means that you have to calculate your path
ID for a given node. Also, Edge uses only one table where
we use two. This means that Edge has to save null values
since the Edge approach saves two node types with different
relational attributes in the same table. For example, when
saving an attribute, one would store both the name and the
value of the attribute, whereas when storing an element you
would only store the name, since an element does not have
a value. In the case of an element, the value field would sim-
ply contain a null value. We do not have to do this since we
have different tables for attributes and elements. To decide
which one is the best approach you would have to take space
versus time complexity into consideration; it is a matter of
deciding between storing null valued fields, versus searching
in two tables.

Another approach for relational schema layout, is the Shared
approach [15]. It makes use of XML schemas to define the

10

relational schema. A table will be created for the root node,
and XML attributes and elements which only occur once will
be the attributes of the database. If the element can contain
other elements which can occur more than once, a new table
wil be created for that element and so on. This can result
in many tables when dealing with complex XML schemas,
which might result in overhead when trying to locate a table.
It does, though, give a better conceptually understandable
representation of the data, than just using a single table,
which might be an advantage when talking about using XML
views [15].

Our approach of only using two tables makes our model
more general and simply structured, than the Shared. Fur-
thermore our tables are easily located, and since all search-
ing is done within only these two tables, we avoid some
database overhead of sorting out references. On the other
hand searching through one large table as in our case, is
more time consuming than searching one of the smaller ta-
bles in the shared approach. But as mentioned the smaller
table needs to be located first, so again it is a matter of time
and space complexity.

5.2 Handling several XML documents

In our approach it is not a problem to shred several docu-
ments and insert them into the database. Because of the en-
coding we use it is simply a matter of changing the root num-
ber of the path ID to a consecutive number. This method
cannot be used in the Shared approach since tables are de-
pendent on a XML schema definition, which means that a
new set of tables will have to be made for each document.
In this regard, Shared less flexible than our solution.

5.3 Dewey path encoding

In Section 3.1.2 we describe a naive and an optimal solu-
tion to ordering Dewey paths. The former involved prefix-
ing path steps with zeroes and performing string sorts and
the latter proposed a more complex solution. Due to time
constraints we have chosen only to implement the naive so-
lution.

5.4 XPath and XQuery implementation issues
In our implementation of XPath we have chosen to put all
the functionality in the database. The obvious advantage is
that we only have to deal with one language. But also it
is only necessary to administrate one implementation. This
is beneficial if one considers using client software written in
different languages, and eventually for different platforms.
Placing the functionality in the database also minimizes net-

work traffic, and exploits the database optimization capabil-
ities.

Eventhough we have only given an outline for the XQuery
implementation, we belive the same approach should be fol-
lowed as for XPath, i.e. put the functionality in the database.
This solution seems ideal for the same reasons as for XPath,
both also there is a close relation between e.g. the way we
solve nested for-clauses, and join mechanisms in an RDBMS.

6. CONCLUSION

In this article we have presented methods for storing and
querying XML data in a relational database. We have shown
a method for storing XML data using a simple database
schema, and how XML data can be shredded to the database,
using a specific Dewey encoding. We have also shown how
XPath axis steps can be implemented, giving specific SQL
queries for how routines can be created in the database. Fur-
ther we have given an outline for how the XQuery FLWOR
construct can be implemented. We have also given the algo-
rithms for reconstructing an XML document, or a fragment
of it.

We have argued that our implementation is simple and gen-
eral, by comparing it to related work. We believe that our
method has some advantages compared to these other stud-
ies in the context of simplicity and generality. Though many
aspects have not been taken into consideration. Future work
could include comparison with other studies regarding space
and time complexity, using statistics for a more exact eval-
uation of different methods.

7. ACKNOWLEDGEMENTS

We thank Albrecht Schmidt, for supervising the process of
development and the writing of this article. We also thank
our fellow students Christian Andersen, Tim Boesen and
Dennis Kjaerulff for valuable discussions on the subject of
XML and related theory. All mentioned individuals are, at
the time of writing, affiliated to the Department of Com-
puter Science at Aalborg University, Denmark.

8. RELATED WORK

Shredding, querying, and round-tripping XML data has been
the topic of various earlier articles. [13, 15, 16] deal with
shredding and round-tripping representing XML files as trees
in the database. Additionally [16] makes use of a “flat”
database representation. [9] uses a tree-representation in the
database, but provides a “flat” view for querying. [19] focuses
on order encoding methods (“Global Order”, “Local Order”,
and “Dewey Order”) that promise to keep the ordering of
XML documents in an unordered database. [11] describes
the mapping of DTDs onto object-relational database sys-
tems. The main topics of [13,14] are querying, the latter
using the shredding strategies “Shared Inline” and “Edge”
from other articles as approaches for case studies. [7] also
deals with querying but outlines an implementation of an
XQuery and XPath compiler, proposing the use of equi-joins
for implementing the iterative, for-bound variables.

9. REFERENCES
[1] About SAX. http://sax.sourceforge.net/.

11

[2] Joan Aliprand, Julie Allen, Joe Becker, Mark Davis,
Michael Everson, Asmus Freytag, John Jenkins, Mike
Ksar, Rick McGowan, Eric Muller, Lisa Moore, Michel
Suignard, and Ken Whistler, editors. The Unicode
Standard — Version 4.0, chapter 3.9, page 77. The
Unicode Consortium,
http://www.unicode.org/versions/Unicode4.0.0/,
August 2003.

[3] Scott Boag, Don Chamberlin, Mary F. Fernéndez,
Daniela Florescu, Jonathan Robie, and Jéréme
Siméon. XQuery 1.0: An XML Query Language. W3C,
http://www.w3.org/TR/xquery, November 2003.

[4] John Boyer. Canonical XML 1.0 Recommendation.
W3C, http://www.w3.org/TR/xml-c14n, March 2001.

[5] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eva
Maler, and Francois Yergau. Eztensible Markup
Language (XML) 1.0. W3C,
http://www.w3.org/TR/REC-xml/, 3rd edition,
Feburary 2004.

[6] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eva
Maler, and Francois Yergau. Ezxtensible Markup
Language (XML) 1.0. W3C,
http://www.w3.org/TR/REC-xml/, 3rd edition,
Feburary 2004. Section 3.1.

[7] Byron Choi, Mary Fernandez, and Jéréme Siméon.
The XQuery Formal Semantics: A Foundation for
Implementation and Optimization. Technical report,
University of Pennsylvania, 2002.

[8] James Clark and Steve DeRose. XML Path Language
(XPath). W3C, http://www.u3.org/TR/xpath,
November 1999.

[9] Daniela Florescu and Donald Kossmann. Storing and
Querying XML Data using an RDBMS. IEEE Data
Engeneering Bulletin, 22(3):27-34, 1999.

[10] Apache Software Foundation. Xerces.

http://xml.apache.org/.

Meike Klettke and Holger Meyer. XML and
Object-Relational Database Systems: Enhancing
Structural Mappings Based on Statistics. In The
World Wide Web and Databases: Third International
Workshop WebDB 2000, volume 1997, pages 151-170.
Springer-Verlag Heidelberg, 2001.

Edward M. McCreight Rudolf Bayer. Organization
and maintenance of large ordered indices. In Acta
Informatica, volume 1, pages 173-189, 1972.

[11]

[12]

[13] Albrecht Schmidt, Martin Kersten, Menzo
Windhouwer, and Florian Waas. Efficient Relational
Storage and Retrieval of XML Documents. In The
World Wide Web and Databases: Third International
Workshop WebDB 2000, volume 1997, pages 137-150.

Springer-Verlag Heidelberg, 2001.

[14] Jayavel Shanmugasundaram, Eugene Shekita, Jerry
Kieman, Rajasekar Krishnamurthy, Efstratios Viglas,
Jeffrey Naughton, and Igor Tatarinov. A General
Technique for Querying XML Documents using a
Relational Database System. ACM SIGMOD,

30(3):20-26, September 2001.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

Jayavel Shanmugasundaram, Kristin Tufte, Gang He,
Chun Zhang, David DeWitt, and Jeffrey Naughton.
Relational Databases for Querying XML Documents:
Limitations and Opportunities. In 25th Very Large
Data Base Endowment Conference, 1999.

Takeyuki Shimura, Masatoshi Yoshikawa, and
Shunsuke Uemura. Storage and Retrieval of XML
Documents Using Object-Relational Databases. In
Database and Ezrpert Systems Applications: 10th
International Conference, DEXA 99, volume 1677,
page 206. Springer-Verlag Heidelberg, 1999.

Abraham Silberschatz, Henry F. Korth, and
S. Sudarshan. Database System Concepts, chapter 4-7.
McGraw-Hill, 4th edition, 2002.

Kimbro Staken. Introduction to Native XML
Databases, October 2001. http://wuw.xml.com/pub/
a/2001/10/31/nativexmldb.html.

Igor Tatarinov, Stratis D. Viglas, Kevin Beyer,
Jayavel Shanmugasundaram, Eugene Shekita, and
Chun Zhang. Storing and Querying Ordered XML
Using a Relational Database System. In 2002 ACM
SIGMOD International Conference on Management of
Data, pages 204-215. ACM Press, 2002.

W3C, http://wuw.w3.0rg/DOM/. Document Object
Model (DOM).

W3C. HyperText Markup Language Homepage. W3C,
http://www.w3.org/MarkUp.

WhatIs.com. http://whatis.com/. Search for
“roundtripping”.

References containing URLs are valid as of May 28, 2004.

12

