
Shredding and Querying XML Data Using an RDBMS

Dennis Plougman Buus
Department of Computer

Science
Aalborg University

dbuus@cs.auc.dk

Thomas Pryds Lauritsen
Department of Computer

Science
Aalborg University

pryds@cs.auc.dk

Jakob Rutkowski Olesen
Department of Computer

Science
Aalborg University

jro@cs.auc.dk

ABSTRACTThis arti
le addresses the problems of querying and retriev-ing XML data stored in a relational database. We dis
ussinsertion of di�erently stru
tured XML do
uments into adatabase with a
onstant relational s
hema by using a sim-ple and general shredding strategy. Closely related to this,and dis
ussed in this arti
le as well, is round-tripping whi
hallows us to return all or a fragment of the data in XMLformat. We also
onsider querying the relational data usingXML Path Language and XML Query language. Further-more, we detail an implementation of XPath axis steps asSQL statements, and outline an approa
h for implementingthe
entral FLWOR
onstru
t in the XQuery language.
1. INTRODUCTIONThe Extensible Markup Language (XML) [5℄ is a widely usedstandard for storing and ex
hanging data, espe
ially throughthe Internet. It features an intuitive stru
ture, whi
h makesit easily readable for humans, and invites even large,
om-plex XML datasets to be represented in a single �le.Although native XML databases [18℄ are built from s
rat
hfor the spe
i�
 purpose of storing and querying XML do
-uments, they are not yet
ommonly used. Sin
e mu
h re-sear
h has been done in the area of relational databases [17℄
ompared to native XML ones, they are more widely appliedand better performing software is available. Thus, it wouldbe interesting to investigate the possibilities of storing XMLdata in a relational database using a general strategy andretrieving data from that relational database in XML for-mat. The querying and retrieval of data from the databaseshould be based on XML standards, so that from the out-side, it would be opaque that the database is a
tually rela-tional and not a native XML database. In doing so, we takeadvantage of the strengths of relational databases, su
h asindi
es, while preserving an XML view of the data.Doing this requires implementation of a pro
ess known asshredding. This is the pro
ess of parsing an XML do
umentand inserting the results into a relational database manage-ment system (RDBMS). In our
ase, we have
hosen to dothis with simpli
ity and generality in mind. Also, we wantedto be able to insert several XML do
uments into the samedatabase without �rst having to examine the stru
ture ofthe XML do
ument and most likely needing to adjust therelational database s
hema a

ordingly. Reverting the rela-tional data into an XML do
ument is
alled round-tripping(for a de�nition, see Se
tion 3.2). This is highly depen-

dent on the implementation of the shredder, of
ourse, so around-tripper
an never exist without a
oherent shredder.However, sin
e
onverting XML data into another repre-sentation just to
onvert it ba
k to its original XML rep-resentation is rather pointless, we would like to insert an-other step in-between. XML Query Language (XQuery) [3℄is a language designed for querying XML data. It featuresXML Path Language (XPath) [8℄ whi
h is a me
hanism foruniquely des
ribing the path of XML elements in a do
u-ment, and FLWOR expressions whi
h let you form a
tualqueries on XML data. The implementation of the neededsubset of these, together with a shredder and a round-tripper,allows us to perform queries on our relational database in away that one would do on XML data in its pure representa-tion and re
eive the results as an XML do
ument.The arti
le is stru
tured in the following manner. We startout by des
ribing preliminary knowledge in Se
tion 2,
ov-ering the basi
s of XML and the parsing of it. Se
tion 3des
ribes the shredding and round-tripping pro
esses, in-
luding the algorithms we utilise. Querying using XQuery,XPath, and FLWOR and the implementation hereof is ad-dressed in Se
tion 4. The arti
le is summed up by an eval-uation in Se
tion 5, and �nally we give our
on
lusion isSe
tion 6. A
knowledgements and related work are men-tioned in Se
tion 7 and in Se
tion 8
2. PRELIMINARIESIn this se
tion we give an introdu
tion to XML and to howbasi
 do
uments are
reated. Furthermore, we present ase
tion on how to parse XML do
uments.
2.1 The XML Data ModelXML is a language based on tags, in quite the same man-ner as Hypertext Markup Language (HTML) [21℄. There arehowever some di�eren
es. XML is used to des
ribe data,and fo
uses on
ontent, as opposed to HTML, whi
h de-s
ribes how data should be displayed. In XML there are noprede�ned tags, so tag names are de�ned by the author ofthe do
ument. These things result in a quite simple datamodel, whi
h o�ers some basi
 building blo
ks, from whi
hmore
omplex models
an be built.The basi
 parts of XML are elements, attributes and
har-a
ter data. An element will have a start tag and an endtag. Everything in-between the start and end tag, is the
ontent of the element. Element
ontent
an be simple
on-1

tent, mixed
ontent, element
ontent, or empty
ontent. Anelement with simple
ontent
ontains only
hara
ter data,mixed
ontent
ontains both
hara
ter data and elements,element
ontent
ontains only elements, and empty
ontentrefers to an empty element, whi
h means that it
ontains noinformation.A sample XML do
ument is shown in Figure 1. The do
u-ment des
ribes a list of two books. The �rst book is writtenby John Doe, has the title The life of John Doe, and
on-tains an attribute ref with the value 23462.It is required that elements are properly nested, whi
h meansthat no element may be ended before all of its
ontainedelements are ended. This hierar
hi
al order of an XML do
-ument enables us to
onsider it as a tree. The top levelelement, whi
h
ontains the entire do
ument, is
alled theroot node, and the
ontent of the top level element is
on-sidered as the root node's subtree. Furthermore the rootnode is the an
estor of all its
ontent, and the
ontent isreferred to as its des
endants. This holds for any node atany level whi
h has a subtree. Nodes whi
h are at the samelevel in the tree and share the same parent are
alled sib-lings. Further, elements
an also have attribute data, whi
hmust be in
luded in the start tag. These will be representedas
hildren in the tree.In Figure 1 the root node of the do
ument is <books>, andits des
endants are <book>, <author> and <title> elements.<?xml version="1.0" en
oding="UTF-8" ?><books><book ref="23462"><author>John Doe</author><title>The Life of John Doe</title></book><book ref="23463" edition="2nd"><author>Jane Doe</author><title>Great Cookie Re
ipes</title></book></books>Figure 1: Example of an XML do
ument.
2.2 Parsing XML DataReading and working with an XML do
ument requires aparser. We
onsidered two di�erent methods of parsing,namely Simple API for XML (SAX) [1℄ and Do
ument Ob-je
t Model (DOM) [20℄. SAX is a
tually just a lexer. Itenables you to work on the di�erent parts of the do
umentas it is being sequentially read by the lexer. DOM is a trueparser in the sense that it builds a parse tree, whi
h
anthen be manipulated. DOM lets you work on a tree stru
-ture, but the tree must be kept in memory, whi
h might
ause problems when handling large XML do
uments. Wehave
hosen to work with SAX in this proje
t sin
e we needto work with large do
uments.
3. SHREDDING AND ROUND-TRIPPINGThis se
tion will explain the
on
epts and our use of bothshredding and round-tripping. We will explain how we havemapped XML data to the database, and how we imple-mented it.

3.1 ShreddingShredding is the pro
ess of parsing an XML do
ument andinserting the result into an RDBMS. For this there are sev-eral strategies, of whi
h [9,15℄ des
ribe a few. Some of thesestrategies propose a relational s
hema be
onstru
ted from aDTD referred to by the XML do
ument that is to be shred-ded. Our strategy fo
uses on having a general relationals
hema, usable for any XML do
ument. That is, no mat-ter the DTD or XML S
hema of a do
ument (or whetherthe do
ument even has a de�ned s
hema), the relationals
hema should be able to
ontain the
ontents of the do
u-ment. Also, we want to be able to store several, di�erentlystru
tured do
uments in the same relational database.
3.1.1 Representing the XML DataAs previously stated, an XML do
ument
onsists of nodesnested into ea
h other. Hen
e, it
an be represented as atree stru
ture where the nodes represent XML start tagsand leaf nodes represent
hara
ter data. The tree repre-sentation of Figure 1 is thus shown in Figure 2. This treeignores attributes; the reason for this is explained later inthis se
tion.

Figure 2: The tree representation of the sample XML do
-ument in Figure 1.Noti
e that two tags are always separated by
hara
ter data,whi
h might
onsist of whitespa
e only. In this �gure, thesewhitespa
e-only
hara
ter data elements are represented bythe unders
ore
hara
ter (_). For shredding purposes, how-ever, we
an safely disregard these. This is illustrated inFigure 3.
3.1.2 Path encodingThe tree representation in Figure 3
an be used to uniquelyidentify ea
h node and its path by using a Dewey-like
lassi-�
ation system [19℄ where all
hild nodes of any given nodeare assigned a (for that set of nodes) unique integer from 1to n. For ea
h node in the tree, its identi�
ation is retrievedby
on
atenating these integers (separated by slashes) fromthe root of the tree, following the path to the node in ques-tion. As an example, the en
ir
led node in Figure 3 has thepath identi�
ation �1/2/1/1�.There is a potential problem with this representation, though.In order to be able to store several integers and slashes, an2

Figure 3: Tree representation disregarding whitespa
e-only
hara
ter data.obvious data type would be a string/var
har. However, ifone tries to sort a set of strings, they will be returned in lex-i
al order, whereas for this purpose we really want them re-turned a

ording to their position in the parse tree. That is,�1/10/1� will be returned before �1/9/1�, although it oughtto
ome in after. Also, there are potential problems
on-
erning the length of the string if one tries to determine thetree depth by measuring the string length instead of makingsure to
ount the number of substrings separated by slashes.A naive solution to this is to pre�x ea
h se
tion betweenthe slashes by zeroes, so that for instan
e �1/10/1� be
omes�000001/000010/000001�. This would indeed solve the sort-ing problem but it introdu
es a
ouple of other problems,namely that an XML element
an then only
ontain a
er-tain number (in the
ase of this example, one million) of
hildren, but more importantly, the zeroes take up a lot ofspa
e. Using the string length of the example above, for anyset of sibling nodes, all nodes from 1 to 9 yield an overheadof 5

6
, nodes 10 to 99 yield an overhead of 2

3
, et
.An optimal solution would therefore be required to take upno more spa
e than ne
essary, it should be inde�nitely s
al-able, and allow sorting. Inspired by the UTF-8 [2℄ en
odingof Uni
ode, the en
oding of the following user-de�ned datatype satis�es the above requirements. A path step, i.e. aninteger, is en
oded in
hunks of one byte, where the �rst 7bits of a byte hold the a
tual integer or part of it, and thelast bit indi
ates whether the integer
ontinues into the nextbyte. This is illustrated in Figure 4.Range Byte 1 Byte 2 Byte 3

0 to 2
7
− 1 xxxxxxx0

2
7 to 2

14
− 1 xxxxxxx1 xxxxxxx0

2
14 to 2

21
− 1 xxxxxxx1 xxxxxxx1 xxxxxxx0Figure 4: En
oding of a path step (an integer) of a pathidenti�
ation.Always being able to extend a
hunk of bytes by an extrabyte allows us to hold in�nitely large integers, and therebyin�nitely many siblings. De�ning a data type that holdsin�nitely many path steps in the same manner would thenallow us to hold in�nitely deep trees. A path step of value

2
7
− 1 = 127 takes up three bytes using the naive solutionbut only one byte using the optimal one. Likewise the value

2
14

− 1 = 16383 takes up �ve and two bytes, respe
tively.In order to allow sorting, one would have to de�ne a
ustom
omparison fun
tion for the data type.
3.1.3 Relational schemaAs mentioned, our relational s
hema is very general, andthus it
onsists of only two tables; one for XML nodes, andone for XML tag attributes. The �rst table (Figure 5) hasthree rows; one for the path ID, a
har-
olumn spe
ifyingthe type (tag element or
hara
ter data) of a given node,and a
olumn holding the
ontents of a node. For elementnodes, the
ontent is the name of the tag, and for
hara
terdata nodes, it is the data itself. We use the pathID
olumnas primary key for the table, sin
e this is unique for everynode. NodespathID type
ontents1 tag books1/1 tag book1/1/1 tag author1/1/1/1
data John Doe1/1/2 tag title1/1/2/1
data The Life of John Doe1/2 tag book1/2/1 tag author1/2/1/1
data Jane Doe1/2/2 tag title1/2/2/1
data Great Cookie Re
ipesFigure 5: Relational s
hema for nodes and example datafrom shredding the do
ument in Figure 1.The attribute table (Figure 6) holds attributes from elementnodes, if su
h exist. A

ording to the XML Re
ommenda-tion [6℄, the attributes of a tag need not appear in any par-ti
ular order, so we
an disregard them when
onstru
tingthe tree and assigning node path IDs. In other words, we
an think of attributes as an asso
iation list where all weneed to store, besides the attribute itself, is its asso
iationto a given node. Therefore, a
olumn
ontaining the pathID of the owner-node and a
olumn holding the name of theattribute form a joint primary key. pathID is a foreign keyto the pathID
olumn in the nodes table. In addition, weneed to store the
ontents of the attribute in a
olumn, of
ourse. AttributespathID attrName
ontents1/1 ref 234621/2 ref 234631/2 edition 2ndFigure 6: Relational s
hema for attributes and example datafrom shredding the do
ument in Figure 1.
3.1.4 Shredding AlgorithmA SAX parser [10℄ enables us to spe
ify what should hap-pen when
ertain events o

ur during the parsing of an XMLdo
ument. In our
ase, these events are the following: Pars-ing is initiated, a start-tag is met, an end-tag is met, and
hara
ter data (ex
luding
hara
ter data in attributes) is3

met. The algorithm in Listing 1 uses a sta
k of integerswhi
h represents the path ID of the
urrently rea
hed node.1 // INITIAL ACTIONS:2 Push do
ument ID to sta
k34 // START TAG:5 Assign
urrent
ontent of sta
k as path ID fortag node6 Save attributes , if any , using
ontent of sta
kas referen
e7 Push 1 to sta
k89 // END TAG:10 Pop an element from sta
k11 In
rease top element of sta
k by one1213 // CHARACTER DATA:14 Assign
urrent
ontent of sta
k as path ID for
hara
ter data node15 In
rease top element of sta
k by oneListing 1: Algorithm for shredding.To rea
h our goal of being able to store several do
uments inthe same relational database, we initially push a do
umentID to the sta
k, uniquely identifying the do
ument (
onse
-utive numbers will do). This will render the �rst integer ofall path IDs of that do
ument uniquely identifyable. Noti
ealso that nothing is stored in the database upon meeting anend tag. This does not mean, however, that we lose infor-mation. The positions of an XML do
ument's end tags areimpli
itly stored in the tree representation and thereby inthe path identi�
ation so that we
an
orre
tly revert therelational data into an XML do
ument.
3.2 Round-trippingIn Computer S
ien
e generally, the term �round-tripping�refers to the
on
ept of
onverting one representation intoanother one and then ba
k again, [22℄. In this arti
le, how-ever, we use it only to refer to the pro
ess of
onvertingshredded relational data ba
k into XML do
uments (i.e. wedo not
ount the shredding pro
ess as a part of round-tripping).
3.2.1 Round-tripper AlgorithmIn order for the round-tripper algorithm presented in thisse
tion to
orre
tly regenerate an XML do
ument (or afragment of it), it must re
eive tuples from the relationaldatabase sequentially, ordered a

ording to path ID. List-ing the tuples in this order is equivalent to traversing theXML tree in-depth, and B-tree [12℄ indi
es guarantee thissort order. We
an utilise the fa
t that this is exa
tly theorder in whi
h the tags should appear in the resulting XMLdo
ument, and we
an use the path ID to extra
t end tagsin the XML do
ument.As Listing 2 illustrates, the key to inserting end tags is asta
k that holds the nodes from the root of the tree to the
urrent node. By also remembering the previously seen pathID in another variable, we
an
ompare the tree depth of thepreviously seen node to the
urrent one and thereby de
idewhether we need to pre�x the start tag, that we are going to

set, with one or more end tags. When leaving a leaf node, nomatter how many levels you as
end, you will only des
endby one level (see Figure 7). Therefore, if the previously seennode was a leaf node of
hara
ter data, the number of neededend tags is the di�eren
e between the two tree depths. Ifthe previous node was an XML tag, then it must be
losedas well, and you will have to add another end tag from thesta
k.

Figure 7: Traversing a tree.An iteration of the algorithm ends by writing the a
tual
ur-rent node to the do
ument as either a start tag or
hara
terdata. Note, that at this point the algorithm must know thepotential attributes of a start tag already. As previouslystated, the order of these is not signi�
ant, though.
3.2.2 Canonical XML EquivalenceAfter (
orre
tly) shredding and round-tripping, you end upwith two XML do
uments (input and output) that are log-i
ally equivalent but may di�er in byte-wise
omparison.Sin
e attributes are not required to appear in any parti
ularorder, the ordering of these may di�er in the two do
uments.Also
hara
ter representations may di�er; the do
umentsmay be expressed in di�erent
hara
ter sets and throughoutthe do
uments di�erent kinds of
hara
ter es
aping may beused.Canoni
al XML [4℄ is a syntax for unambiguously express-ing an XML do
ument, and it may be used to show the
or-re
tness of a shredded and round-tripped do
ument sin
e itmust represent the same logi
al stru
ture as its sour
e do
-ument. After
anoni
alizating both the input and outputdo
uments, their
anoni
al forms may be
ompared byte-by-byte, and if they prove identi
al the original do
umentsare said to be equivalent (see Figure 8).
4. QUERY PROCESSINGThis se
tion deals with the topi
 of pro
essing queries overXML do
uments. Two issues will be examined, namelyXML Path Language [8℄ and XML Query Language [3℄.XML Path Language (XPath) is a language in it self, butalso an integrated part of XML Query Language (XQuery).We start this se
tion by introdu
ing XPath, examining anumber of issues regarding it's implementation, and then goon to do the same for XQuery.4

1 For all node tuples in alphanumeri
al order , ordered by Path ID2 If
urrent node is
loser to the root or at the same level as the previously seen node3 Repeat (previous node path depth -
urrent node path depth) times4 Pop node from sta
k and write it as XML end tag5 If previously seen node was of type tag6 Pop an extra node from sta
k and write it as XML end tag7 If type of
urrent node is tag8 Write
urrent node as XML start tag in
luding its attributes , if any9 Push
urrent node unto sta
k10 Else if type of
urrent node is
hara
ter data11 Write out data as text12 While sta
k is not empty13 Pop node from sta
k and write it as XML end tagListing 2: Algorithm for round-tripping.

Figure 8: Canoni
al XML equivalen
e.
4.1 XML Path LanguageAs mentioned, XML do
uments may be represented as treesof nodes. XML Path Language is used to sele
t spe
i�
nodes in su
h a tree. An example XPath expression whi
hsele
ts the names of all authors who have written a book,from the XML do
ument in Figure 1, might look like this://book/authorAn XPath expression is resolved in a step-wise manner, fromleft to right. The / element is a step divider, and an expres-sion starting with a / refers to an absolute path, begin-ning from the root node. The presen
e of // in an expres-sion refers to all des
endant nodes in a do
ument from agiven point. It is also possible to refer to spe
i�
 attributesby using �, for example //�ref, whi
h sele
ts all ref at-tributes in the do
ument, and boolean predi
ates, writtenlike [author="John Doe"℄, may also be used in an XPathexpression to further narrow the results.Central to XPath is the notion of axes. An axis de�nes a re-lation between a single node and a number of related nodes.The available axes are shown in Figure 9. In the exampleexpression above, we used the abbreviated notation, whi
hdoes not
ontain expli
it axis notation. The unabbreviatedversion of our example, however, would be:/des
endant-or-self::book/
hild::authorA
onstru
t su
h as
hild::author is an example of a sin-gle axis step. An axis step
onsists of an axis name and a

an
estor:: an
estor-or-self::attribute::
hild::des
endant:: des
endant-or-self::following:: following-sibling::namespa
e:: parent::pre
eding:: pre
eding-sibling::self::Figure 9: XPath axes.node test. The axis name denotes the relationship betweenthe resulting set of nodes and a
ontext node, and the nodetest �lters the results. Further on in this arti
le we use twospe
ial node tests; text() and node(). text() simply se-le
ts all text nodes, and node() sele
ts any type of nodethat an XML do
ument may have. Every axis step must,obviously, in
lude an axis name. In the abbreviated nota-tion, the axis
hild:: is implied whenever an axis nameis not spe
i�ed. //book is the abbreviated notation fordes
endant-or-self::book.Stri
tly speaking, the
orre
t abbreviation of //book is:/des
endant-or-self::node()/
hild::bookHowever, for this example the unabbreviated XPath expres-sion des
ribed above is su�
ient.In the example above, the individual steps are:des
endant-or-self::book - This sele
ts every element inthe do
ument whi
h is a book. In this �rst axis step of theexpression, the
ontext node is the root node, and thereforedes
endant-or-self:: evaluates to every element in thedo
ument. The node test �lters out every node whi
h is nota book.
hild::author - This step sele
ts every node whi
h is anauthor and a
hild of one of the nodes in the result set ofthe previous step.The the elements resulting from this example query wouldbe:5

<author>John Doe</author><author>Jane Doe</author>Con
eptually, ea
h XPath axis step is evaluated on the set ofresults from the previous step. More a

urately, the resultsof one step ea
h be
ome the
ontext node for the next step,whi
h is run on
e for ea
h
ontext node. For the �rst step,the
ontext node is always the root node. This step-wiseevaluation lends itself well to an implementation where we
onstru
t the di�erent possible step operators as individual
omponents whi
h may be run in a
hain to perform queries.
4.1.1 Implementing XPathThe fa
t that our path IDs are Dewey en
oded, means thatthey
arry with them information about the entire an
es-try of the node. Having this information within ea
h nodeprovides us with ex
ellent opportunities for lo
ating nodesalong the axes. Therefore, the axis steps may be redu
ed topattern mat
hing on the string representation of the Deweyen
oded path IDs. What follows is a list of the axes, witha des
ription of their implementation and the a
tual SQLstatements that may be used as building blo
ks when im-plementing an XPath evaluator. These pro
edures in
ludea
_node, whi
h is the path ID of the
ontext node, and anodeTest, whi
h is used to limit results to those nodes whi
hmat
h the node test. These SQL statements may be usedas the bodies in a set of fun
tions stored in the database for
onvenient a

ess. The statements assume the table layoutdes
ribed in se
tion 3.1.3.

• self:: - we return the
ontext node.SELECT * FROM nodesWHERE pathID =
_nodeAND
ontents = nodeTest
• parent:: - we remove the last element from the pathID of the
ontext node and sele
t the node whi
hmat
hes the resulting path ID. Removing the last ele-ment of a
ontext node path ID su
h as "000001/000003"is equivalent to moving up one level in the syntax tree,thus sele
ting the parent of the
ontext node.SELECT * FROM nodesWHERE pathID = parent_name(
_node)AND
ontents = nodeTestNote: parent_name() is a stored fun
tion whi
h re-moves the last 7
hara
ters from a path ID stored us-ing the naive solution for Dewey en
oding des
ribed inSe
tion 3.1.2. It is
oded thus:parent_name(
_node){ RETURN LEFT(
_node, LENGTH(
_node)- 7) }
• an
estor-or-self:: - in this pro
edure we make useof a fun
tion is_prefix(substr, str) to sele
t allnodes whose path ID are a pre�x of the path ID ofthe
ontext node.SELECT * FROM nodesWHERE is_prefix(pathid,
_node)AND
ontents = nodeTestThe body of the is_prefix(substr, str) fun
tion is:

is_prefix(substr, str){IF LOCATE(substr, str) = 1RETURN TRUEELSERETURN FALSEEND IF}LOCATE() is a built in MySQL fun
tion whi
h returnsthe position of the �rst o

urren
e of a substring withina string. If the path ID of a node being
onsidered isa substring at position 1 of the path ID of the
ontextnode, then the node is an an
estor-or-self::. Most,if not all, SQL implementations have a similar built infun
tion.
• an
estor:: - we evaluate this axis in mu
h the sameway as an
estor_or_self(), ex
ept we use the parentof the
ontext node in the argument for is_prefix()SELECT * FROM nodesWHERE is_prefix(pathid, parent_name(
_node))AND
ontents = nodeTest
• attribute:: - we sele
t all entries from the attributetable where the path ID mat
hes that of the
ontextnode.SELECT * FROM attributesWHERE pathid =
_nodeAND
ontents = nodeTest
•
hild:: - we sele
t all nodes whose path IDs are a
on
atenation of the path ID of a
ontext node and oneadditional path element(one forward slash and exa
tly6
hara
ters). The unders
ore mat
hes exa
tly one
hara
ter when used with the LIKE operator.SELECT * FROM nodesWHERE pathid LIKE CONCAT(
_node, '/______')AND
ontents = nodeTest
• des
endant:: - we sele
t all nodes whose path IDs area
on
atenation of the path ID of the
ontext node andan arbitrary number of additional path elements. Theper
ent is a wild
ard mat
hing one or more
hara
terswhen used with the LIKE operator.SELECT * FROM nodesWHERE pathid LIKE CONCAT(
_node, '/%')AND
ontents = nodeTest
• des
endant-or-self:: - same as above, adding the
ontext node to the result.SELECT * FROM nodesWHERE pathid (LIKE CONCAT(
_node, '/%')OR pathid =
_node)AND
ontents = nodeTest
• following:: - we sele
t all nodes whose path IDsare alphanumeri
ally greater than that of the
ontextnode.SELECT * FROM nodesWHERE pathid >
_nodeAND
ontents = nodeTest6

• following-sibling:: - as above, limiting the resultsto nodes whose parent ids are the same as the parentof the
ontext node.SELECT * FROM nodesWHERE pathid >
_nodeAND parent_name(
_node) = parent_name(pathid)AND
ontents = nodeTest
• pre
eding:: - we sele
t all nodes whose path IDsare alphanumeri
ally smaller than that of the
ontextnode.SELECT * FROM nodesWHERE pathid <
_nodeAND
ontents = nodeTest
• pre
eding-sibling:: - as above, limiting the resultsto nodes whose parent ids are the same as the parentof the
ontext node.SELECT * FROM nodesWHERE pathid <
_nodeAND parent_name(
_node) = parent_name(pathid)AND
ontents = nodeTest
• namespa
e:: - our implementation omits this axis.

4.2 XML Query LanguageXML Query Language (XQuery) is a language similar toSQL. It is used to query XML do
uments, and shares thesame data model as XPath. In this se
tion, we �rst pro-vide an introdu
tion to FLWOR expressions (pronoun
ed��ower�), whi
h are the fundamental building blo
ks of manyinteresting XQuery expressions, after whi
h we detail ourimplementation.
4.2.1 FLWOR ExpressionsXQuery
ontains a query
onstru
t known as FLWOR ex-pressions. Its stru
ture is akin to the SELECT-FROM-WHERE
onstru
t in SQL, and its name is formed from the �rst let-ters in the key words of the
onstru
t, namely for, let,where, order by, and return.An example of a FLWOR expression whi
h returns the titleof every book written by �John Doe� from our example XMLdo
ument in Figure 1 is shown in Figure 10.for $book in //booklet $title := $book/titlewhere $book[author="John Doe"℄order by $titlereturn<book>{ $title }</book>Figure 10: An example of a FLWOR expression.In this example, the for
lause binds the result of the expres-sion �//book� to the variable $book, and for ea
h book thelet
lause binds the title to the $title variable. The where
lause �lters out any node where the author is not �John

Doe�, and the order by
lause sorts the results alphabeti-
ally by title. Finally, the return
lause returns a fragmentof XML with the title en
losed by �<book></book>� tags.The result of running this query on our example XML do
-ument (Figure 1) is:<result><book><title>The Life of John Doe</title></book></result>On the
on
eptual level, FLWOR expressions follow the data�ow model outlined in Figure 11. Their evaluation may bedes
ribed as a pro
ess of step-wise re�nement.

Figure 11: Stages of FLWOR evaluationThe stages of this data �ow model may be outlined thus:
• The for
lauses bind the results of expressions to vari-ables,
reating a stream of tuples. Ea
h tuple in thestream
ontains the variable binding of one of the itemsin the result of the expression with whi
h it is asso
i-ated. A let
lause adds the entire result of its eval-uation to ea
h of the tuples
reated by for
lauses, ifsu
h exist, otherwise it will
reate a single tuple.
• The stream of tuples is subje
ted to the where
lause.This
lause �lters the tuple stream a

ording to a
on-ditional statement. Only tuples for whi
h the state-ment holds true will survive. This pruned list of tu-ples then serves as the input for the next step in theevaluation:
• The order by
lause applies an ordering to the �lteredtuples.
• The return
lause is responsible for returning the re-sult of the FLWOR expression as XML. For ea
h tuplein the stream, the return
lause
onstru
ts the appro-priate fragment of XML, based on the bindings in thetuple. Sin
e return must output valid XML, resultsare pa
kaged inside <result></result> tags to ensurethat they have a root node.7

In the rest of this se
tion, we examine some interesting de-tails regarding the for/let stage of FLWOR evaluation.As we have seen, the for and let
lauses in a FLWORexpression both bind the result of an expression to a variablename, albeit in slightly di�erent ways. The for
lause bindsea
h element in a result to the variable, iteratively, whereasthe let
lause binds the entire result to the variable. Toillustrate the di�eren
es between for and let we presenttwo example queries:for $i in (1,2,3)return <tuple>{$i}</tuple>The query binds the result of the expression (1,2,3) to thevariable $i, iteratively. This
reates a number of tuples,ea
h of whi
h
ontains the binding of a single item in theresult to the variable. The resulting tuples are illustrated inthe output of this query:<result><tuple>1</tuple><tuple>2</tuple><tuple>3</tuple></result>If we write a similar query, this time using let, the result isquite di�erent.let $i := (1,2,3)return <tuple>{$i}</tuple>The let
lause binds the entire result of the expression to thevariable $i, without iteration. Therefore, the query yieldsjust a single tuple:<result><tuple>1 2 3</tuple></result>In
ases where there are more than one for
lause in theFLWOR expression, the resulting tuples are the Cartesianprodu
t of ea
h variable assigned in a for. Consider thequery:for $i in (1,2)for $j in (3,4)return <tuple>{$i},{$j}</tuple>As before, ea
h variable is iteratively bound to the evalua-tion of its asso
iated expression. For ea
h iteration of the$i variable, a tuple is
reated for ea
h iteration of the $jvariable. The resulting tuples are therefore:<result><tuple>1,3</tuple>

<tuple>1,4</tuple><tuple>2,3</tuple><tuple>2,4</tuple></result>As mentioned above, when a let
lause is in
luded alongwith a for
lause, the binding of its variable is added toevery tuple. The presen
e of the let
lause does not add tothe number of tuples.for $i in (1,2)let $j := (3,4)return <tuple>{$i},{$j}</tuple>This query
reates one tuple for ea
h binding of the for-bound variable $i. It then adds the binding of the let-bound variable $j to ea
h of these tuples. The tuple stream
reated by this query is then:<result><tuple>1,3 4</tuple><tuple>2,3 4</tuple></result>
4.2.2 Implementing FLWORIn this se
tion we explore some interesting issues regardingthe implementation of FLWOR expressions on our shreddedXML do
uments. We examine issues parti
ular to ea
h ofthe stages of the
on
eptual data �ow model in the previousse
tion. Moving from the
on
eptual model to an imple-mentation that may be run on our shredded data within anRDBMS requires some adaptation.
Thefor andlet clausesCentral to the
on
ept of FLWOR expressions is the afore-mentioned tuple stream,
ontaining the variables bound infor and let
lauses. This stage of FLWOR evaluationpresents the greatest
hallenges. First, the tuple streamitself will be represented by a table
ontaining one
olumnfor ea
h variable. Se
ond, the
on
ept of iteratively boundvariables needs to be adapted to the data model of relationaldatabases. The solution is to represent ea
h variable as atable,
ontaining ea
h item in the evaluation of the expres-sion asso
iated with the variable. Thus, a variable $i boundin a for
lause su
h as this:for $i in (1,2,3). . . may be represented by the following table:$i123The next
hallenge is in regards to s
ope. For ea
h for andlet
lause, the variables bound in any previous for or letmust be available for use. To illustrate this issue,
onsiderthis example XML do
ument:8

<books><book id="1"><author>AuthorA</author></book><book id="2"><author>AuthorB</author><author>AuthorC</author><author>AuthorD</author></book><book id="3"></book></books>Suppose one enters a query starting with these for
lauses:for $b in //bookfor $a in $b/authorThe point of this query is to
reate a set of tuples, ea
h tuple
ontaining the binding of an instan
e of a book and one ofits authors. The evaluation of the expression �$b/author�,asso
iated with the $a variable, is
learly dependant on theevaluation of the expression �//book�, asso
iated with the $bvariable. Therefore, our goal is to
reate our tuple streamas a table
ontaining the following tuples:$b $aBook1 AuthorABook2 AuthorBBook2 AuthorCBook2 AuthorDNote that Book1 refers to the <book id="1"> element, andAuthorA refers to the <author> element
ontaining the text�AuthorA�. In the a
tual implementation, the �elds in thistable will
ontain the equivalent path IDs instead. Con
ep-tually, the sele
tion of an element
ontains the entire
on-tents, in
luding all des
ending nodes. However, we
hooseto only store a single path ID with whi
h to represent an ele-ment from our database, sin
e we
an easily sele
t the entire
ontents when needed, with the help of our implementationof the XPath axis des
endant-or-self::.In order to
reate the
orre
t tuple stream, we must start byevaluating the expression �//book�, asso
iated with the $bvariable. For ea
h iteration of the three books we must thenbran
h out and iterate over the evaluation of the expressionin the next for
lause. Ea
h evaluation of the expression$b/author di�ers for ea
h book, in both value and numberof results.For the purpose of generating the initial tuple stream, wepropose the algorithm in Listing 3. We assume that ea
hfor and let
lause binds a single variable to an expression.These expressions are a

essed through an array $expr[℄of a datatype that holds the variable name, the asso
iatedexpression, and a type �ag indi
ating whether the bindingis a for or a let
lause. The array is indexed by the or-der in whi
h the variable bindings appear in the FLWORexpression. In pra
tise, this a

ess to the expressions
ouldbe implemented in a number of ways.

The filltable()fun
tion takes a $s
ope_tuple argument.This argument is a tuple
ontaining the variable bindingsthat may be used in pro
essing the
urrent expression, thusthe s
ope. The other argument of the fun
tion, $expr_num,is the means by whi
h we move on to the next for/let
lause in the $expr[℄ array ea
h time we perform anotherre
ursive fun
tion
all.Furthermore, our algorithm makes use of a fun
tion whi
hwe have named binder(). This binder() fun
tion is theme
hanism that binds the result of an expression to a vari-able by
reating the a table whi
h represents one variable.Its basi
 operation is to run our XPath evaluator on the ex-pression it re
ieves as an argument and enter the results intoa single-
olumn table. The result returned by the binder()fun
tion di�ers for for and let
lauses. for-bound variablesare returned as a table
ontaining one tuple for ea
h item inthe evaluation of its asso
iated expression. let-bound vari-ables are returned as a table
ontaining just a single tuplewhi
h holds the entire evaluation of the asso
iated expres-sion. binder() also takes a $s
ope_tuple argument. If theexpression being evaluated requires the value of a previouslybound variable, then binder() retrieves this value from the$s
ope_tuple.In the body of the filltable() fun
tion, we
reate a ta-ble designated $return_table, whi
h is used to store theresults fet
hed from the re
ursive fun
tion
alls as they aremade. This table has one
olumn for every variable bindingstored in $expr[℄within the interval [$expr_num...<last$expr_num> ℄. We then
all binder() with the
urrent ex-pression and the s
ope tuple. After re
eiving a result frombinder(), we make re
ursive
alls to filltable() for ea
htuple in this result, in order to join our s
ope tuple withthe results of the next for/let
lause, and add this tothe $return_table. Ea
h tuple resulting from binder()is also used as the $s
ope_tuple in these re
ursive
alls tofilltable(). At the end of the exe
ution of a filltable()
all, we return the resulting table, whi
h
ontains the tuplesthat the
alling fun
tion needs to join with its own s
opetuple.
Thewhere clauseAfter
reating the initial tuple stream as des
ribed above,the where
lause may be applied. The where
lause
on-tains a
onditional statement that must evaluate to truein order for the tuple in question to survive. It is ne
es-sary to perform additional XPath or XQuery pro
essing be-forehand, in order to fully resolve a
lause su
h as �where$book[author="John Doe"℄�, or any other expression thatin
ludes additional path steps or even full XQuery state-ments. For instan
e, in this example the
urrent iteration of$book
ould
ontain the path ID �1/2/42�. We would thenhave to evaluate �
hild::author/
hild::text()� with thenode �1/2/42� as the
ontext node in order to obtain a valueto
ompare to the string �John Doe�.
Theorder by clauseAt this point we will be ready to apply ordering to thestream. In this step, we might also need to perform ad-ditional XPath evaluations in order to retrieve string valuesto sort by. For example, in the
ase of an order by
lausesu
h as �order by $b/title�, we would need to evaluate9

1 filltable($s
ope_tuple , $ expr_num){2
reate $return_table with one
olumn for every binding in $expr[$exprnum ...<last $exprnum >℄3 $result := binder ($s
ope_tuple , $ expr[$ expr_num ℄)4 for all $tuple in $ result5 insert into $ return_table the values: $ s
ope_tuple joined with filltable($tuple , $ expr_num + 1)6 return $return_table7 } Listing 3: Our algorithm for generating the tuple stream.�
hild::title/
hild::text()� on ea
h node in the tuplestream and order the stream by these results.
Thereturn clauseUpon rea
hing the return statement, the tuple stream isready for output. The return statement iterates over ea
hof the re
ords in the �nal tuple stream and returns the de-sired output on
e for ea
h of these. In this step, also, weare still required to perform lookups. If, for instan
e, theresult stored in a variable $book is the path ID of a bookelement and this variable is in
luded in the return state-ment, then the output string needs to be the entire
on-tents of the element. Within our implementation, we wouldperform a des
endant-or-self::node() operation with thebook node as the
ontext node in order to re
eive a
om-plete set of nodes that we
an send to our round-tripper.The round-tripper would then return the appropriate XMLfragment to insert in pla
e of the variable in ea
h iterationof the return statement.
5. EVALUATIONIn this se
tion we evaluate our implementation in general,and make
omparisons to other studies, with di�erent ap-proa
hes.
5.1 Database schemasOur approa
h to
reating the relational s
hema is quite sim-ilar to that in [9℄
alled Edge. In the original Edge, path IDsare stored through referen
es to parent nodes, whereas westore a full path ID for ea
h tuple in the database. Usingthe path ID en
oding enables us to identify the path andthe depth of a given node immediately, whereas referen
esto parent nodes means that you have to
al
ulate your pathID for a given node. Also, Edge uses only one table wherewe use two. This means that Edge has to save null valuessin
e the Edge approa
h saves two node types with di�erentrelational attributes in the same table. For example, whensaving an attribute, one would store both the name and thevalue of the attribute, whereas when storing an element youwould only store the name, sin
e an element does not havea value. In the
ase of an element, the value �eld would sim-ply
ontain a null value. We do not have to do this sin
e wehave di�erent tables for attributes and elements. To de
idewhi
h one is the best approa
h you would have to take spa
eversus time
omplexity into
onsideration; it is a matter ofde
iding between storing null valued �elds, versus sear
hingin two tables.Another approa
h for relational s
hema layout, is the Sharedapproa
h [15℄. It makes use of XML s
hemas to de�ne the

relational s
hema. A table will be
reated for the root node,and XML attributes and elements whi
h only o

ur on
e willbe the attributes of the database. If the element
an
ontainother elements whi
h
an o

ur more than on
e, a new tablewil be
reated for that element and so on. This
an resultin many tables when dealing with
omplex XML s
hemas,whi
h might result in overhead when trying to lo
ate a table.It does, though, give a better
on
eptually understandablerepresentation of the data, than just using a single table,whi
h might be an advantage when talking about using XMLviews [15℄.Our approa
h of only using two tables makes our modelmore general and simply stru
tured, than the Shared. Fur-thermore our tables are easily lo
ated, and sin
e all sear
h-ing is done within only these two tables, we avoid somedatabase overhead of sorting out referen
es. On the otherhand sear
hing through one large table as in our
ase, ismore time
onsuming than sear
hing one of the smaller ta-bles in the shared approa
h. But as mentioned the smallertable needs to be lo
ated �rst, so again it is a matter of timeand spa
e
omplexity.
5.2 Handling several XML documentsIn our approa
h it is not a problem to shred several do
u-ments and insert them into the database. Be
ause of the en-
oding we use it is simply a matter of
hanging the root num-ber of the path ID to a
onse
utive number. This method
annot be used in the Shared approa
h sin
e tables are de-pendent on a XML s
hema de�nition, whi
h means that anew set of tables will have to be made for ea
h do
ument.In this regard, Shared less �exible than our solution.
5.3 Dewey path encodingIn Se
tion 3.1.2 we des
ribe a naive and an optimal solu-tion to ordering Dewey paths. The former involved pre�x-ing path steps with zeroes and performing string sorts andthe latter proposed a more
omplex solution. Due to time
onstraints we have
hosen only to implement the naive so-lution.
5.4 XPath and XQuery implementation issuesIn our implementation of XPath we have
hosen to put allthe fun
tionality in the database. The obvious advantage isthat we only have to deal with one language. But also itis only ne
essary to administrate one implementation. Thisis bene�
ial if one
onsiders using
lient software written indi�erent languages, and eventually for di�erent platforms.Pla
ing the fun
tionality in the database also minimizes net-10

work tra�
, and exploits the database optimization
apabil-ities.Eventhough we have only given an outline for the XQueryimplementation, we belive the same approa
h should be fol-lowed as for XPath, i.e. put the fun
tionality in the database.This solution seems ideal for the same reasons as for XPath,both also there is a
lose relation between e.g. the way wesolve nested for-
lauses, and join me
hanisms in an RDBMS.
6. CONCLUSIONIn this arti
le we have presented methods for storing andquerying XML data in a relational database. We have showna method for storing XML data using a simple databases
hema, and how XML data
an be shredded to the database,using a spe
i�
 Dewey en
oding. We have also shown howXPath axis steps
an be implemented, giving spe
i�
 SQLqueries for how routines
an be
reated in the database. Fur-ther we have given an outline for how the XQuery FLWOR
onstru
t
an be implemented. We have also given the algo-rithms for re
onstru
ting an XML do
ument, or a fragmentof it.We have argued that our implementation is simple and gen-eral, by
omparing it to related work. We believe that ourmethod has some advantages
ompared to these other stud-ies in the
ontext of simpli
ity and generality. Though manyaspe
ts have not been taken into
onsideration. Future work
ould in
lude
omparison with other studies regarding spa
eand time
omplexity, using statisti
s for a more exa
t eval-uation of di�erent methods.
7. ACKNOWLEDGEMENTSWe thank Albre
ht S
hmidt, for supervising the pro
ess ofdevelopment and the writing of this arti
le. We also thankour fellow students Christian Andersen, Tim Boesen andDennis Kjærul� for valuable dis
ussions on the subje
t ofXML and related theory. All mentioned individuals are, atthe time of writing, a�liated to the Department of Com-puter S
ien
e at Aalborg University, Denmark.
8. RELATED WORKShredding, querying, and round-tripping XML data has beenthe topi
 of various earlier arti
les. [13, 15, 16℄ deal withshredding and round-tripping representing XML �les as treesin the database. Additionally [16℄ makes use of a ��at�database representation. [9℄ uses a tree-representation in thedatabase, but provides a ��at� view for querying. [19℄ fo
useson order en
oding methods (�Global Order�, �Lo
al Order�,and �Dewey Order�) that promise to keep the ordering ofXML do
uments in an unordered database. [11℄ des
ribesthe mapping of DTDs onto obje
t-relational database sys-tems. The main topi
s of [13, 14℄ are querying, the latterusing the shredding strategies �Shared Inline� and �Edge�from other arti
les as approa
hes for
ase studies. [7℄ alsodeals with querying but outlines an implementation of anXQuery and XPath
ompiler, proposing the use of equi-joinsfor implementing the iterative, for-bound variables.
9. REFERENCES[1℄ About SAX. http://sax.sour
eforge.net/.

[2℄ Joan Aliprand, Julie Allen, Joe Be
ker, Mark Davis,Mi
hael Everson, Asmus Freytag, John Jenkins, MikeKsar, Ri
k M
Gowan, Eri
 Muller, Lisa Moore, Mi
helSuignard, and Ken Whistler, editors. The Uni
odeStandard � Version 4.0,
hapter 3.9, page 77. TheUni
ode Consortium,http://www.uni
ode.org/versions/Uni
ode4.0.0/,August 2003.[3℄ S
ott Boag, Don Chamberlin, Mary F. Fernández,Daniela Flores
u, Jonathan Robie, and Jér�meSiméon. XQuery 1.0: An XML Query Language. W3C,http://www.w3.org/TR/xquery, November 2003.[4℄ John Boyer. Canoni
al XML 1.0 Re
ommendation.W3C, http://www.w3.org/TR/xml-
14n, Mar
h 2001.[5℄ Tim Bray, Jean Paoli, C. M. Sperberg-M
Queen, EvaMaler, and François Yergau. Extensible MarkupLanguage (XML) 1.0. W3C,http://www.w3.org/TR/REC-xml/, 3rd edition,Feburary 2004.[6℄ Tim Bray, Jean Paoli, C. M. Sperberg-M
Queen, EvaMaler, and François Yergau. Extensible MarkupLanguage (XML) 1.0. W3C,http://www.w3.org/TR/REC-xml/, 3rd edition,Feburary 2004. Se
tion 3.1.[7℄ Byron Choi, Mary Fernández, and Jér�me Siméon.The XQuery Formal Semanti
s: A Foundation forImplementation and Optimization. Te
hni
al report,University of Pennsylvania, 2002.[8℄ James Clark and Steve DeRose. XML Path Language(XPath). W3C, http://www.w3.org/TR/xpath,November 1999.[9℄ Daniela Flores
u and Donald Kossmann. Storing andQuerying XML Data using an RDBMS. IEEE DataEngeneering Bulletin, 22(3):27�34, 1999.[10℄ Apa
he Software Foundation. Xer
es.http://xml.apa
he.org/.[11℄ Meike Klettke and Holger Meyer. XML andObje
t-Relational Database Systems: Enhan
ingStru
tural Mappings Based on Statisti
s. In TheWorld Wide Web and Databases: Third InternationalWorkshop WebDB 2000, volume 1997, pages 151�170.Springer-Verlag Heidelberg, 2001.[12℄ Edward M. M
Creight Rudolf Bayer. Organizationand maintenan
e of large ordered indi
es. In A
taInformati
a, volume 1, pages 173�189, 1972.[13℄ Albre
ht S
hmidt, Martin Kersten, MenzoWindhouwer, and Florian Waas. E�
ient RelationalStorage and Retrieval of XML Do
uments. In TheWorld Wide Web and Databases: Third InternationalWorkshop WebDB 2000, volume 1997, pages 137�150.Springer-Verlag Heidelberg, 2001.[14℄ Jayavel Shanmugasundaram, Eugene Shekita, JerryKieman, Rajasekar Krishnamurthy, Efstratios Viglas,Je�rey Naughton, and Igor Tatarinov. A GeneralTe
hnique for Querying XML Do
uments using aRelational Database System. ACM SIGMOD,30(3):20�26, September 2001.11

[15℄ Jayavel Shanmugasundaram, Kristin Tufte, Gang He,Chun Zhang, David DeWitt, and Je�rey Naughton.Relational Databases for Querying XML Do
uments:Limitations and Opportunities. In 25th Very LargeData Base Endowment Conferen
e, 1999.[16℄ Takeyuki Shimura, Masatoshi Yoshikawa, andShunsuke Uemura. Storage and Retrieval of XMLDo
uments Using Obje
t-Relational Databases. InDatabase and Expert Systems Appli
ations: 10thInternational Conferen
e, DEXA '99, volume 1677,page 206. Springer-Verlag Heidelberg, 1999.[17℄ Abraham Silbers
hatz, Henry F. Korth, andS. Sudarshan. Database System Con
epts,
hapter 4-7.M
Graw-Hill, 4th edition, 2002.[18℄ Kimbro Staken. Introdu
tion to Native XMLDatabases, O
tober 2001. http://www.xml.
om/pub/a/2001/10/31/nativexmldb.html.[19℄ Igor Tatarinov, Stratis D. Viglas, Kevin Beyer,Jayavel Shanmugasundaram, Eugene Shekita, andChun Zhang. Storing and Querying Ordered XMLUsing a Relational Database System. In 2002 ACMSIGMOD International Conferen
e on Management ofData, pages 204�215. ACM Press, 2002.[20℄ W3C, http://www.w3.org/DOM/. Do
ument Obje
tModel (DOM).[21℄ W3C. HyperText Markup Language Homepage. W3C,http://www.w3.org/MarkUp.[22℄ WhatIs.
om. http://whatis.
om/. Sear
h for�roundtripping�.Referen
es
ontaining URLs are valid as of May 28, 2004.

12

