
Shredding and Querying XML Data Using an RDBMS

Dennis Plougman Buus
Department of Computer

Science
Aalborg University

dbuus@cs.auc.dk

Thomas Pryds Lauritsen
Department of Computer

Science
Aalborg University

pryds@cs.auc.dk

Jakob Rutkowski Olesen
Department of Computer

Science
Aalborg University

jro@cs.auc.dk

ABSTRACTThis artile addresses the problems of querying and retriev-ing XML data stored in a relational database. We disussinsertion of di�erently strutured XML douments into adatabase with a onstant relational shema by using a sim-ple and general shredding strategy. Closely related to this,and disussed in this artile as well, is round-tripping whihallows us to return all or a fragment of the data in XMLformat. We also onsider querying the relational data usingXML Path Language and XML Query language. Further-more, we detail an implementation of XPath axis steps asSQL statements, and outline an approah for implementingthe entral FLWOR onstrut in the XQuery language.
1. INTRODUCTIONThe Extensible Markup Language (XML) [5℄ is a widely usedstandard for storing and exhanging data, espeially throughthe Internet. It features an intuitive struture, whih makesit easily readable for humans, and invites even large, om-plex XML datasets to be represented in a single �le.Although native XML databases [18℄ are built from srathfor the spei� purpose of storing and querying XML do-uments, they are not yet ommonly used. Sine muh re-searh has been done in the area of relational databases [17℄ompared to native XML ones, they are more widely appliedand better performing software is available. Thus, it wouldbe interesting to investigate the possibilities of storing XMLdata in a relational database using a general strategy andretrieving data from that relational database in XML for-mat. The querying and retrieval of data from the databaseshould be based on XML standards, so that from the out-side, it would be opaque that the database is atually rela-tional and not a native XML database. In doing so, we takeadvantage of the strengths of relational databases, suh asindies, while preserving an XML view of the data.Doing this requires implementation of a proess known asshredding. This is the proess of parsing an XML doumentand inserting the results into a relational database manage-ment system (RDBMS). In our ase, we have hosen to dothis with simpliity and generality in mind. Also, we wantedto be able to insert several XML douments into the samedatabase without �rst having to examine the struture ofthe XML doument and most likely needing to adjust therelational database shema aordingly. Reverting the rela-tional data into an XML doument is alled round-tripping(for a de�nition, see Setion 3.2). This is highly depen-

dent on the implementation of the shredder, of ourse, so around-tripper an never exist without a oherent shredder.However, sine onverting XML data into another repre-sentation just to onvert it bak to its original XML rep-resentation is rather pointless, we would like to insert an-other step in-between. XML Query Language (XQuery) [3℄is a language designed for querying XML data. It featuresXML Path Language (XPath) [8℄ whih is a mehanism foruniquely desribing the path of XML elements in a dou-ment, and FLWOR expressions whih let you form atualqueries on XML data. The implementation of the neededsubset of these, together with a shredder and a round-tripper,allows us to perform queries on our relational database in away that one would do on XML data in its pure representa-tion and reeive the results as an XML doument.The artile is strutured in the following manner. We startout by desribing preliminary knowledge in Setion 2, ov-ering the basis of XML and the parsing of it. Setion 3desribes the shredding and round-tripping proesses, in-luding the algorithms we utilise. Querying using XQuery,XPath, and FLWOR and the implementation hereof is ad-dressed in Setion 4. The artile is summed up by an eval-uation in Setion 5, and �nally we give our onlusion isSetion 6. Aknowledgements and related work are men-tioned in Setion 7 and in Setion 8
2. PRELIMINARIESIn this setion we give an introdution to XML and to howbasi douments are reated. Furthermore, we present asetion on how to parse XML douments.
2.1 The XML Data ModelXML is a language based on tags, in quite the same man-ner as Hypertext Markup Language (HTML) [21℄. There arehowever some di�erenes. XML is used to desribe data,and fouses on ontent, as opposed to HTML, whih de-sribes how data should be displayed. In XML there are noprede�ned tags, so tag names are de�ned by the author ofthe doument. These things result in a quite simple datamodel, whih o�ers some basi building bloks, from whihmore omplex models an be built.The basi parts of XML are elements, attributes and har-ater data. An element will have a start tag and an endtag. Everything in-between the start and end tag, is theontent of the element. Element ontent an be simple on-1

tent, mixed ontent, element ontent, or empty ontent. Anelement with simple ontent ontains only harater data,mixed ontent ontains both harater data and elements,element ontent ontains only elements, and empty ontentrefers to an empty element, whih means that it ontains noinformation.A sample XML doument is shown in Figure 1. The dou-ment desribes a list of two books. The �rst book is writtenby John Doe, has the title The life of John Doe, and on-tains an attribute ref with the value 23462.It is required that elements are properly nested, whih meansthat no element may be ended before all of its ontainedelements are ended. This hierarhial order of an XML do-ument enables us to onsider it as a tree. The top levelelement, whih ontains the entire doument, is alled theroot node, and the ontent of the top level element is on-sidered as the root node's subtree. Furthermore the rootnode is the anestor of all its ontent, and the ontent isreferred to as its desendants. This holds for any node atany level whih has a subtree. Nodes whih are at the samelevel in the tree and share the same parent are alled sib-lings. Further, elements an also have attribute data, whihmust be inluded in the start tag. These will be representedas hildren in the tree.In Figure 1 the root node of the doument is <books>, andits desendants are <book>, <author> and <title> elements.<?xml version="1.0" enoding="UTF-8" ?><books><book ref="23462"><author>John Doe</author><title>The Life of John Doe</title></book><book ref="23463" edition="2nd"><author>Jane Doe</author><title>Great Cookie Reipes</title></book></books>Figure 1: Example of an XML doument.
2.2 Parsing XML DataReading and working with an XML doument requires aparser. We onsidered two di�erent methods of parsing,namely Simple API for XML (SAX) [1℄ and Doument Ob-jet Model (DOM) [20℄. SAX is atually just a lexer. Itenables you to work on the di�erent parts of the doumentas it is being sequentially read by the lexer. DOM is a trueparser in the sense that it builds a parse tree, whih anthen be manipulated. DOM lets you work on a tree stru-ture, but the tree must be kept in memory, whih mightause problems when handling large XML douments. Wehave hosen to work with SAX in this projet sine we needto work with large douments.
3. SHREDDING AND ROUND-TRIPPINGThis setion will explain the onepts and our use of bothshredding and round-tripping. We will explain how we havemapped XML data to the database, and how we imple-mented it.

3.1 ShreddingShredding is the proess of parsing an XML doument andinserting the result into an RDBMS. For this there are sev-eral strategies, of whih [9,15℄ desribe a few. Some of thesestrategies propose a relational shema be onstruted from aDTD referred to by the XML doument that is to be shred-ded. Our strategy fouses on having a general relationalshema, usable for any XML doument. That is, no mat-ter the DTD or XML Shema of a doument (or whetherthe doument even has a de�ned shema), the relationalshema should be able to ontain the ontents of the dou-ment. Also, we want to be able to store several, di�erentlystrutured douments in the same relational database.
3.1.1 Representing the XML DataAs previously stated, an XML doument onsists of nodesnested into eah other. Hene, it an be represented as atree struture where the nodes represent XML start tagsand leaf nodes represent harater data. The tree repre-sentation of Figure 1 is thus shown in Figure 2. This treeignores attributes; the reason for this is explained later inthis setion.

Figure 2: The tree representation of the sample XML do-ument in Figure 1.Notie that two tags are always separated by harater data,whih might onsist of whitespae only. In this �gure, thesewhitespae-only harater data elements are represented bythe undersore harater (_). For shredding purposes, how-ever, we an safely disregard these. This is illustrated inFigure 3.
3.1.2 Path encodingThe tree representation in Figure 3 an be used to uniquelyidentify eah node and its path by using a Dewey-like lassi-�ation system [19℄ where all hild nodes of any given nodeare assigned a (for that set of nodes) unique integer from 1to n. For eah node in the tree, its identi�ation is retrievedby onatenating these integers (separated by slashes) fromthe root of the tree, following the path to the node in ques-tion. As an example, the enirled node in Figure 3 has thepath identi�ation �1/2/1/1�.There is a potential problem with this representation, though.In order to be able to store several integers and slashes, an2

Figure 3: Tree representation disregarding whitespae-onlyharater data.obvious data type would be a string/varhar. However, ifone tries to sort a set of strings, they will be returned in lex-ial order, whereas for this purpose we really want them re-turned aording to their position in the parse tree. That is,�1/10/1� will be returned before �1/9/1�, although it oughtto ome in after. Also, there are potential problems on-erning the length of the string if one tries to determine thetree depth by measuring the string length instead of makingsure to ount the number of substrings separated by slashes.A naive solution to this is to pre�x eah setion betweenthe slashes by zeroes, so that for instane �1/10/1� beomes�000001/000010/000001�. This would indeed solve the sort-ing problem but it introdues a ouple of other problems,namely that an XML element an then only ontain a er-tain number (in the ase of this example, one million) ofhildren, but more importantly, the zeroes take up a lot ofspae. Using the string length of the example above, for anyset of sibling nodes, all nodes from 1 to 9 yield an overheadof 5

6
, nodes 10 to 99 yield an overhead of 2

3
, et.An optimal solution would therefore be required to take upno more spae than neessary, it should be inde�nitely sal-able, and allow sorting. Inspired by the UTF-8 [2℄ enodingof Uniode, the enoding of the following user-de�ned datatype satis�es the above requirements. A path step, i.e. aninteger, is enoded in hunks of one byte, where the �rst 7bits of a byte hold the atual integer or part of it, and thelast bit indiates whether the integer ontinues into the nextbyte. This is illustrated in Figure 4.Range Byte 1 Byte 2 Byte 3

0 to 2
7
− 1 xxxxxxx0

2
7 to 2

14
− 1 xxxxxxx1 xxxxxxx0

2
14 to 2

21
− 1 xxxxxxx1 xxxxxxx1 xxxxxxx0Figure 4: Enoding of a path step (an integer) of a pathidenti�ation.Always being able to extend a hunk of bytes by an extrabyte allows us to hold in�nitely large integers, and therebyin�nitely many siblings. De�ning a data type that holdsin�nitely many path steps in the same manner would thenallow us to hold in�nitely deep trees. A path step of value

2
7
− 1 = 127 takes up three bytes using the naive solutionbut only one byte using the optimal one. Likewise the value

2
14

− 1 = 16383 takes up �ve and two bytes, respetively.In order to allow sorting, one would have to de�ne a ustomomparison funtion for the data type.
3.1.3 Relational schemaAs mentioned, our relational shema is very general, andthus it onsists of only two tables; one for XML nodes, andone for XML tag attributes. The �rst table (Figure 5) hasthree rows; one for the path ID, a har-olumn speifyingthe type (tag element or harater data) of a given node,and a olumn holding the ontents of a node. For elementnodes, the ontent is the name of the tag, and for haraterdata nodes, it is the data itself. We use the pathID olumnas primary key for the table, sine this is unique for everynode. NodespathID type ontents1 tag books1/1 tag book1/1/1 tag author1/1/1/1 data John Doe1/1/2 tag title1/1/2/1 data The Life of John Doe1/2 tag book1/2/1 tag author1/2/1/1 data Jane Doe1/2/2 tag title1/2/2/1 data Great Cookie ReipesFigure 5: Relational shema for nodes and example datafrom shredding the doument in Figure 1.The attribute table (Figure 6) holds attributes from elementnodes, if suh exist. Aording to the XML Reommenda-tion [6℄, the attributes of a tag need not appear in any par-tiular order, so we an disregard them when onstrutingthe tree and assigning node path IDs. In other words, wean think of attributes as an assoiation list where all weneed to store, besides the attribute itself, is its assoiationto a given node. Therefore, a olumn ontaining the pathID of the owner-node and a olumn holding the name of theattribute form a joint primary key. pathID is a foreign keyto the pathID olumn in the nodes table. In addition, weneed to store the ontents of the attribute in a olumn, ofourse. AttributespathID attrName ontents1/1 ref 234621/2 ref 234631/2 edition 2ndFigure 6: Relational shema for attributes and example datafrom shredding the doument in Figure 1.
3.1.4 Shredding AlgorithmA SAX parser [10℄ enables us to speify what should hap-pen when ertain events our during the parsing of an XMLdoument. In our ase, these events are the following: Pars-ing is initiated, a start-tag is met, an end-tag is met, andharater data (exluding harater data in attributes) is3

met. The algorithm in Listing 1 uses a stak of integerswhih represents the path ID of the urrently reahed node.1 // INITIAL ACTIONS:2 Push doument ID to stak34 // START TAG:5 Assign urrent ontent of stak as path ID fortag node6 Save attributes , if any , using ontent of stakas referene7 Push 1 to stak89 // END TAG:10 Pop an element from stak11 Inrease top element of stak by one1213 // CHARACTER DATA:14 Assign urrent ontent of stak as path ID forharater data node15 Inrease top element of stak by oneListing 1: Algorithm for shredding.To reah our goal of being able to store several douments inthe same relational database, we initially push a doumentID to the stak, uniquely identifying the doument (onse-utive numbers will do). This will render the �rst integer ofall path IDs of that doument uniquely identifyable. Notiealso that nothing is stored in the database upon meeting anend tag. This does not mean, however, that we lose infor-mation. The positions of an XML doument's end tags areimpliitly stored in the tree representation and thereby inthe path identi�ation so that we an orretly revert therelational data into an XML doument.
3.2 Round-trippingIn Computer Siene generally, the term �round-tripping�refers to the onept of onverting one representation intoanother one and then bak again, [22℄. In this artile, how-ever, we use it only to refer to the proess of onvertingshredded relational data bak into XML douments (i.e. wedo not ount the shredding proess as a part of round-tripping).
3.2.1 Round-tripper AlgorithmIn order for the round-tripper algorithm presented in thissetion to orretly regenerate an XML doument (or afragment of it), it must reeive tuples from the relationaldatabase sequentially, ordered aording to path ID. List-ing the tuples in this order is equivalent to traversing theXML tree in-depth, and B-tree [12℄ indies guarantee thissort order. We an utilise the fat that this is exatly theorder in whih the tags should appear in the resulting XMLdoument, and we an use the path ID to extrat end tagsin the XML doument.As Listing 2 illustrates, the key to inserting end tags is astak that holds the nodes from the root of the tree to theurrent node. By also remembering the previously seen pathID in another variable, we an ompare the tree depth of thepreviously seen node to the urrent one and thereby deidewhether we need to pre�x the start tag, that we are going to

set, with one or more end tags. When leaving a leaf node, nomatter how many levels you asend, you will only desendby one level (see Figure 7). Therefore, if the previously seennode was a leaf node of harater data, the number of neededend tags is the di�erene between the two tree depths. Ifthe previous node was an XML tag, then it must be losedas well, and you will have to add another end tag from thestak.

Figure 7: Traversing a tree.An iteration of the algorithm ends by writing the atual ur-rent node to the doument as either a start tag or haraterdata. Note, that at this point the algorithm must know thepotential attributes of a start tag already. As previouslystated, the order of these is not signi�ant, though.
3.2.2 Canonical XML EquivalenceAfter (orretly) shredding and round-tripping, you end upwith two XML douments (input and output) that are log-ially equivalent but may di�er in byte-wise omparison.Sine attributes are not required to appear in any partiularorder, the ordering of these may di�er in the two douments.Also harater representations may di�er; the doumentsmay be expressed in di�erent harater sets and throughoutthe douments di�erent kinds of harater esaping may beused.Canonial XML [4℄ is a syntax for unambiguously express-ing an XML doument, and it may be used to show the or-retness of a shredded and round-tripped doument sine itmust represent the same logial struture as its soure do-ument. After anonializating both the input and outputdouments, their anonial forms may be ompared byte-by-byte, and if they prove idential the original doumentsare said to be equivalent (see Figure 8).
4. QUERY PROCESSINGThis setion deals with the topi of proessing queries overXML douments. Two issues will be examined, namelyXML Path Language [8℄ and XML Query Language [3℄.XML Path Language (XPath) is a language in it self, butalso an integrated part of XML Query Language (XQuery).We start this setion by introduing XPath, examining anumber of issues regarding it's implementation, and then goon to do the same for XQuery.4

1 For all node tuples in alphanumerial order , ordered by Path ID2 If urrent node is loser to the root or at the same level as the previously seen node3 Repeat (previous node path depth - urrent node path depth) times4 Pop node from stak and write it as XML end tag5 If previously seen node was of type tag6 Pop an extra node from stak and write it as XML end tag7 If type of urrent node is tag8 Write urrent node as XML start tag inluding its attributes , if any9 Push urrent node unto stak10 Else if type of urrent node is harater data11 Write out data as text12 While stak is not empty13 Pop node from stak and write it as XML end tagListing 2: Algorithm for round-tripping.

Figure 8: Canonial XML equivalene.
4.1 XML Path LanguageAs mentioned, XML douments may be represented as treesof nodes. XML Path Language is used to selet spei�nodes in suh a tree. An example XPath expression whihselets the names of all authors who have written a book,from the XML doument in Figure 1, might look like this://book/authorAn XPath expression is resolved in a step-wise manner, fromleft to right. The / element is a step divider, and an expres-sion starting with a / refers to an absolute path, begin-ning from the root node. The presene of // in an expres-sion refers to all desendant nodes in a doument from agiven point. It is also possible to refer to spei� attributesby using �, for example //�ref, whih selets all ref at-tributes in the doument, and boolean prediates, writtenlike [author="John Doe"℄, may also be used in an XPathexpression to further narrow the results.Central to XPath is the notion of axes. An axis de�nes a re-lation between a single node and a number of related nodes.The available axes are shown in Figure 9. In the exampleexpression above, we used the abbreviated notation, whihdoes not ontain expliit axis notation. The unabbreviatedversion of our example, however, would be:/desendant-or-self::book/hild::authorA onstrut suh as hild::author is an example of a sin-gle axis step. An axis step onsists of an axis name and a

anestor:: anestor-or-self::attribute:: hild::desendant:: desendant-or-self::following:: following-sibling::namespae:: parent::preeding:: preeding-sibling::self::Figure 9: XPath axes.node test. The axis name denotes the relationship betweenthe resulting set of nodes and a ontext node, and the nodetest �lters the results. Further on in this artile we use twospeial node tests; text() and node(). text() simply se-lets all text nodes, and node() selets any type of nodethat an XML doument may have. Every axis step must,obviously, inlude an axis name. In the abbreviated nota-tion, the axis hild:: is implied whenever an axis nameis not spei�ed. //book is the abbreviated notation fordesendant-or-self::book.Stritly speaking, the orret abbreviation of //book is:/desendant-or-self::node()/hild::bookHowever, for this example the unabbreviated XPath expres-sion desribed above is su�ient.In the example above, the individual steps are:desendant-or-self::book - This selets every element inthe doument whih is a book. In this �rst axis step of theexpression, the ontext node is the root node, and thereforedesendant-or-self:: evaluates to every element in thedoument. The node test �lters out every node whih is nota book.hild::author - This step selets every node whih is anauthor and a hild of one of the nodes in the result set ofthe previous step.The the elements resulting from this example query wouldbe:5

<author>John Doe</author><author>Jane Doe</author>Coneptually, eah XPath axis step is evaluated on the set ofresults from the previous step. More aurately, the resultsof one step eah beome the ontext node for the next step,whih is run one for eah ontext node. For the �rst step,the ontext node is always the root node. This step-wiseevaluation lends itself well to an implementation where weonstrut the di�erent possible step operators as individualomponents whih may be run in a hain to perform queries.
4.1.1 Implementing XPathThe fat that our path IDs are Dewey enoded, means thatthey arry with them information about the entire anes-try of the node. Having this information within eah nodeprovides us with exellent opportunities for loating nodesalong the axes. Therefore, the axis steps may be redued topattern mathing on the string representation of the Deweyenoded path IDs. What follows is a list of the axes, witha desription of their implementation and the atual SQLstatements that may be used as building bloks when im-plementing an XPath evaluator. These proedures inludea _node, whih is the path ID of the ontext node, and anodeTest, whih is used to limit results to those nodes whihmath the node test. These SQL statements may be usedas the bodies in a set of funtions stored in the database foronvenient aess. The statements assume the table layoutdesribed in setion 3.1.3.

• self:: - we return the ontext node.SELECT * FROM nodesWHERE pathID = _nodeAND ontents = nodeTest
• parent:: - we remove the last element from the pathID of the ontext node and selet the node whihmathes the resulting path ID. Removing the last ele-ment of a ontext node path ID suh as "000001/000003"is equivalent to moving up one level in the syntax tree,thus seleting the parent of the ontext node.SELECT * FROM nodesWHERE pathID = parent_name(_node)AND ontents = nodeTestNote: parent_name() is a stored funtion whih re-moves the last 7 haraters from a path ID stored us-ing the naive solution for Dewey enoding desribed inSetion 3.1.2. It is oded thus:parent_name(_node){ RETURN LEFT(_node, LENGTH(_node)- 7) }
• anestor-or-self:: - in this proedure we make useof a funtion is_prefix(substr, str) to selet allnodes whose path ID are a pre�x of the path ID ofthe ontext node.SELECT * FROM nodesWHERE is_prefix(pathid, _node)AND ontents = nodeTestThe body of the is_prefix(substr, str) funtion is:

is_prefix(substr, str){IF LOCATE(substr, str) = 1RETURN TRUEELSERETURN FALSEEND IF}LOCATE() is a built in MySQL funtion whih returnsthe position of the �rst ourrene of a substring withina string. If the path ID of a node being onsidered isa substring at position 1 of the path ID of the ontextnode, then the node is an anestor-or-self::. Most,if not all, SQL implementations have a similar built infuntion.
• anestor:: - we evaluate this axis in muh the sameway as anestor_or_self(), exept we use the parentof the ontext node in the argument for is_prefix()SELECT * FROM nodesWHERE is_prefix(pathid, parent_name(_node))AND ontents = nodeTest
• attribute:: - we selet all entries from the attributetable where the path ID mathes that of the ontextnode.SELECT * FROM attributesWHERE pathid = _nodeAND ontents = nodeTest
• hild:: - we selet all nodes whose path IDs are aonatenation of the path ID of a ontext node and oneadditional path element(one forward slash and exatly6 haraters). The undersore mathes exatly oneharater when used with the LIKE operator.SELECT * FROM nodesWHERE pathid LIKE CONCAT(_node, '/______')AND ontents = nodeTest
• desendant:: - we selet all nodes whose path IDs area onatenation of the path ID of the ontext node andan arbitrary number of additional path elements. Theperent is a wildard mathing one or more haraterswhen used with the LIKE operator.SELECT * FROM nodesWHERE pathid LIKE CONCAT(_node, '/%')AND ontents = nodeTest
• desendant-or-self:: - same as above, adding theontext node to the result.SELECT * FROM nodesWHERE pathid (LIKE CONCAT(_node, '/%')OR pathid = _node)AND ontents = nodeTest
• following:: - we selet all nodes whose path IDsare alphanumerially greater than that of the ontextnode.SELECT * FROM nodesWHERE pathid > _nodeAND ontents = nodeTest6

• following-sibling:: - as above, limiting the resultsto nodes whose parent ids are the same as the parentof the ontext node.SELECT * FROM nodesWHERE pathid > _nodeAND parent_name(_node) = parent_name(pathid)AND ontents = nodeTest
• preeding:: - we selet all nodes whose path IDsare alphanumerially smaller than that of the ontextnode.SELECT * FROM nodesWHERE pathid < _nodeAND ontents = nodeTest
• preeding-sibling:: - as above, limiting the resultsto nodes whose parent ids are the same as the parentof the ontext node.SELECT * FROM nodesWHERE pathid < _nodeAND parent_name(_node) = parent_name(pathid)AND ontents = nodeTest
• namespae:: - our implementation omits this axis.

4.2 XML Query LanguageXML Query Language (XQuery) is a language similar toSQL. It is used to query XML douments, and shares thesame data model as XPath. In this setion, we �rst pro-vide an introdution to FLWOR expressions (pronouned��ower�), whih are the fundamental building bloks of manyinteresting XQuery expressions, after whih we detail ourimplementation.
4.2.1 FLWOR ExpressionsXQuery ontains a query onstrut known as FLWOR ex-pressions. Its struture is akin to the SELECT-FROM-WHEREonstrut in SQL, and its name is formed from the �rst let-ters in the key words of the onstrut, namely for, let,where, order by, and return.An example of a FLWOR expression whih returns the titleof every book written by �John Doe� from our example XMLdoument in Figure 1 is shown in Figure 10.for $book in //booklet $title := $book/titlewhere $book[author="John Doe"℄order by $titlereturn<book>{ $title }</book>Figure 10: An example of a FLWOR expression.In this example, the for lause binds the result of the expres-sion �//book� to the variable $book, and for eah book thelet lause binds the title to the $title variable. The wherelause �lters out any node where the author is not �John

Doe�, and the order by lause sorts the results alphabeti-ally by title. Finally, the return lause returns a fragmentof XML with the title enlosed by �<book></book>� tags.The result of running this query on our example XML do-ument (Figure 1) is:<result><book><title>The Life of John Doe</title></book></result>On the oneptual level, FLWOR expressions follow the data�ow model outlined in Figure 11. Their evaluation may bedesribed as a proess of step-wise re�nement.

Figure 11: Stages of FLWOR evaluationThe stages of this data �ow model may be outlined thus:
• The for lauses bind the results of expressions to vari-ables, reating a stream of tuples. Eah tuple in thestream ontains the variable binding of one of the itemsin the result of the expression with whih it is assoi-ated. A let lause adds the entire result of its eval-uation to eah of the tuples reated by for lauses, ifsuh exist, otherwise it will reate a single tuple.
• The stream of tuples is subjeted to the where lause.This lause �lters the tuple stream aording to a on-ditional statement. Only tuples for whih the state-ment holds true will survive. This pruned list of tu-ples then serves as the input for the next step in theevaluation:
• The order by lause applies an ordering to the �lteredtuples.
• The return lause is responsible for returning the re-sult of the FLWOR expression as XML. For eah tuplein the stream, the return lause onstruts the appro-priate fragment of XML, based on the bindings in thetuple. Sine return must output valid XML, resultsare pakaged inside <result></result> tags to ensurethat they have a root node.7

In the rest of this setion, we examine some interesting de-tails regarding the for/let stage of FLWOR evaluation.As we have seen, the for and let lauses in a FLWORexpression both bind the result of an expression to a variablename, albeit in slightly di�erent ways. The for lause bindseah element in a result to the variable, iteratively, whereasthe let lause binds the entire result to the variable. Toillustrate the di�erenes between for and let we presenttwo example queries:for $i in (1,2,3)return <tuple>{$i}</tuple>The query binds the result of the expression (1,2,3) to thevariable $i, iteratively. This reates a number of tuples,eah of whih ontains the binding of a single item in theresult to the variable. The resulting tuples are illustrated inthe output of this query:<result><tuple>1</tuple><tuple>2</tuple><tuple>3</tuple></result>If we write a similar query, this time using let, the result isquite di�erent.let $i := (1,2,3)return <tuple>{$i}</tuple>The let lause binds the entire result of the expression to thevariable $i, without iteration. Therefore, the query yieldsjust a single tuple:<result><tuple>1 2 3</tuple></result>In ases where there are more than one for lause in theFLWOR expression, the resulting tuples are the Cartesianprodut of eah variable assigned in a for. Consider thequery:for $i in (1,2)for $j in (3,4)return <tuple>{$i},{$j}</tuple>As before, eah variable is iteratively bound to the evalua-tion of its assoiated expression. For eah iteration of the$i variable, a tuple is reated for eah iteration of the $jvariable. The resulting tuples are therefore:<result><tuple>1,3</tuple>

<tuple>1,4</tuple><tuple>2,3</tuple><tuple>2,4</tuple></result>As mentioned above, when a let lause is inluded alongwith a for lause, the binding of its variable is added toevery tuple. The presene of the let lause does not add tothe number of tuples.for $i in (1,2)let $j := (3,4)return <tuple>{$i},{$j}</tuple>This query reates one tuple for eah binding of the for-bound variable $i. It then adds the binding of the let-bound variable $j to eah of these tuples. The tuple streamreated by this query is then:<result><tuple>1,3 4</tuple><tuple>2,3 4</tuple></result>
4.2.2 Implementing FLWORIn this setion we explore some interesting issues regardingthe implementation of FLWOR expressions on our shreddedXML douments. We examine issues partiular to eah ofthe stages of the oneptual data �ow model in the previoussetion. Moving from the oneptual model to an imple-mentation that may be run on our shredded data within anRDBMS requires some adaptation.
Thefor andlet clausesCentral to the onept of FLWOR expressions is the afore-mentioned tuple stream, ontaining the variables bound infor and let lauses. This stage of FLWOR evaluationpresents the greatest hallenges. First, the tuple streamitself will be represented by a table ontaining one olumnfor eah variable. Seond, the onept of iteratively boundvariables needs to be adapted to the data model of relationaldatabases. The solution is to represent eah variable as atable, ontaining eah item in the evaluation of the expres-sion assoiated with the variable. Thus, a variable $i boundin a for lause suh as this:for $i in (1,2,3). . . may be represented by the following table:$i123The next hallenge is in regards to sope. For eah for andlet lause, the variables bound in any previous for or letmust be available for use. To illustrate this issue, onsiderthis example XML doument:8

<books><book id="1"><author>AuthorA</author></book><book id="2"><author>AuthorB</author><author>AuthorC</author><author>AuthorD</author></book><book id="3"></book></books>Suppose one enters a query starting with these for lauses:for $b in //bookfor $a in $b/authorThe point of this query is to reate a set of tuples, eah tupleontaining the binding of an instane of a book and one ofits authors. The evaluation of the expression �$b/author�,assoiated with the $a variable, is learly dependant on theevaluation of the expression �//book�, assoiated with the $bvariable. Therefore, our goal is to reate our tuple streamas a table ontaining the following tuples:$b $aBook1 AuthorABook2 AuthorBBook2 AuthorCBook2 AuthorDNote that Book1 refers to the <book id="1"> element, andAuthorA refers to the <author> element ontaining the text�AuthorA�. In the atual implementation, the �elds in thistable will ontain the equivalent path IDs instead. Conep-tually, the seletion of an element ontains the entire on-tents, inluding all desending nodes. However, we hooseto only store a single path ID with whih to represent an ele-ment from our database, sine we an easily selet the entireontents when needed, with the help of our implementationof the XPath axis desendant-or-self::.In order to reate the orret tuple stream, we must start byevaluating the expression �//book�, assoiated with the $bvariable. For eah iteration of the three books we must thenbranh out and iterate over the evaluation of the expressionin the next for lause. Eah evaluation of the expression$b/author di�ers for eah book, in both value and numberof results.For the purpose of generating the initial tuple stream, wepropose the algorithm in Listing 3. We assume that eahfor and let lause binds a single variable to an expression.These expressions are aessed through an array $expr[℄of a datatype that holds the variable name, the assoiatedexpression, and a type �ag indiating whether the bindingis a for or a let lause. The array is indexed by the or-der in whih the variable bindings appear in the FLWORexpression. In pratise, this aess to the expressions ouldbe implemented in a number of ways.

The filltable()funtion takes a $sope_tuple argument.This argument is a tuple ontaining the variable bindingsthat may be used in proessing the urrent expression, thusthe sope. The other argument of the funtion, $expr_num,is the means by whih we move on to the next for/letlause in the $expr[℄ array eah time we perform anotherreursive funtion all.Furthermore, our algorithm makes use of a funtion whihwe have named binder(). This binder() funtion is themehanism that binds the result of an expression to a vari-able by reating the a table whih represents one variable.Its basi operation is to run our XPath evaluator on the ex-pression it reieves as an argument and enter the results intoa single-olumn table. The result returned by the binder()funtion di�ers for for and let lauses. for-bound variablesare returned as a table ontaining one tuple for eah item inthe evaluation of its assoiated expression. let-bound vari-ables are returned as a table ontaining just a single tuplewhih holds the entire evaluation of the assoiated expres-sion. binder() also takes a $sope_tuple argument. If theexpression being evaluated requires the value of a previouslybound variable, then binder() retrieves this value from the$sope_tuple.In the body of the filltable() funtion, we reate a ta-ble designated $return_table, whih is used to store theresults fethed from the reursive funtion alls as they aremade. This table has one olumn for every variable bindingstored in $expr[℄within the interval [$expr_num...<last$expr_num> ℄. We then all binder() with the urrent ex-pression and the sope tuple. After reeiving a result frombinder(), we make reursive alls to filltable() for eahtuple in this result, in order to join our sope tuple withthe results of the next for/let lause, and add this tothe $return_table. Eah tuple resulting from binder()is also used as the $sope_tuple in these reursive alls tofilltable(). At the end of the exeution of a filltable()all, we return the resulting table, whih ontains the tuplesthat the alling funtion needs to join with its own sopetuple.
Thewhere clauseAfter reating the initial tuple stream as desribed above,the where lause may be applied. The where lause on-tains a onditional statement that must evaluate to truein order for the tuple in question to survive. It is nees-sary to perform additional XPath or XQuery proessing be-forehand, in order to fully resolve a lause suh as �where$book[author="John Doe"℄�, or any other expression thatinludes additional path steps or even full XQuery state-ments. For instane, in this example the urrent iteration of$book ould ontain the path ID �1/2/42�. We would thenhave to evaluate �hild::author/hild::text()� with thenode �1/2/42� as the ontext node in order to obtain a valueto ompare to the string �John Doe�.
Theorder by clauseAt this point we will be ready to apply ordering to thestream. In this step, we might also need to perform ad-ditional XPath evaluations in order to retrieve string valuesto sort by. For example, in the ase of an order by lausesuh as �order by $b/title�, we would need to evaluate9

1 filltable($sope_tuple , $ expr_num){2 reate $return_table with one olumn for every binding in $expr[$exprnum ...<last $exprnum >℄3 $result := binder ($sope_tuple , $ expr[$ expr_num ℄)4 for all $tuple in $ result5 insert into $ return_table the values: $ sope_tuple joined with filltable($tuple , $ expr_num + 1)6 return $return_table7 } Listing 3: Our algorithm for generating the tuple stream.�hild::title/hild::text()� on eah node in the tuplestream and order the stream by these results.
Thereturn clauseUpon reahing the return statement, the tuple stream isready for output. The return statement iterates over eahof the reords in the �nal tuple stream and returns the de-sired output one for eah of these. In this step, also, weare still required to perform lookups. If, for instane, theresult stored in a variable $book is the path ID of a bookelement and this variable is inluded in the return state-ment, then the output string needs to be the entire on-tents of the element. Within our implementation, we wouldperform a desendant-or-self::node() operation with thebook node as the ontext node in order to reeive a om-plete set of nodes that we an send to our round-tripper.The round-tripper would then return the appropriate XMLfragment to insert in plae of the variable in eah iterationof the return statement.
5. EVALUATIONIn this setion we evaluate our implementation in general,and make omparisons to other studies, with di�erent ap-proahes.
5.1 Database schemasOur approah to reating the relational shema is quite sim-ilar to that in [9℄ alled Edge. In the original Edge, path IDsare stored through referenes to parent nodes, whereas westore a full path ID for eah tuple in the database. Usingthe path ID enoding enables us to identify the path andthe depth of a given node immediately, whereas referenesto parent nodes means that you have to alulate your pathID for a given node. Also, Edge uses only one table wherewe use two. This means that Edge has to save null valuessine the Edge approah saves two node types with di�erentrelational attributes in the same table. For example, whensaving an attribute, one would store both the name and thevalue of the attribute, whereas when storing an element youwould only store the name, sine an element does not havea value. In the ase of an element, the value �eld would sim-ply ontain a null value. We do not have to do this sine wehave di�erent tables for attributes and elements. To deidewhih one is the best approah you would have to take spaeversus time omplexity into onsideration; it is a matter ofdeiding between storing null valued �elds, versus searhingin two tables.Another approah for relational shema layout, is the Sharedapproah [15℄. It makes use of XML shemas to de�ne the

relational shema. A table will be reated for the root node,and XML attributes and elements whih only our one willbe the attributes of the database. If the element an ontainother elements whih an our more than one, a new tablewil be reated for that element and so on. This an resultin many tables when dealing with omplex XML shemas,whih might result in overhead when trying to loate a table.It does, though, give a better oneptually understandablerepresentation of the data, than just using a single table,whih might be an advantage when talking about using XMLviews [15℄.Our approah of only using two tables makes our modelmore general and simply strutured, than the Shared. Fur-thermore our tables are easily loated, and sine all searh-ing is done within only these two tables, we avoid somedatabase overhead of sorting out referenes. On the otherhand searhing through one large table as in our ase, ismore time onsuming than searhing one of the smaller ta-bles in the shared approah. But as mentioned the smallertable needs to be loated �rst, so again it is a matter of timeand spae omplexity.
5.2 Handling several XML documentsIn our approah it is not a problem to shred several dou-ments and insert them into the database. Beause of the en-oding we use it is simply a matter of hanging the root num-ber of the path ID to a onseutive number. This methodannot be used in the Shared approah sine tables are de-pendent on a XML shema de�nition, whih means that anew set of tables will have to be made for eah doument.In this regard, Shared less �exible than our solution.
5.3 Dewey path encodingIn Setion 3.1.2 we desribe a naive and an optimal solu-tion to ordering Dewey paths. The former involved pre�x-ing path steps with zeroes and performing string sorts andthe latter proposed a more omplex solution. Due to timeonstraints we have hosen only to implement the naive so-lution.
5.4 XPath and XQuery implementation issuesIn our implementation of XPath we have hosen to put allthe funtionality in the database. The obvious advantage isthat we only have to deal with one language. But also itis only neessary to administrate one implementation. Thisis bene�ial if one onsiders using lient software written indi�erent languages, and eventually for di�erent platforms.Plaing the funtionality in the database also minimizes net-10

work tra�, and exploits the database optimization apabil-ities.Eventhough we have only given an outline for the XQueryimplementation, we belive the same approah should be fol-lowed as for XPath, i.e. put the funtionality in the database.This solution seems ideal for the same reasons as for XPath,both also there is a lose relation between e.g. the way wesolve nested for-lauses, and join mehanisms in an RDBMS.
6. CONCLUSIONIn this artile we have presented methods for storing andquerying XML data in a relational database. We have showna method for storing XML data using a simple databaseshema, and how XML data an be shredded to the database,using a spei� Dewey enoding. We have also shown howXPath axis steps an be implemented, giving spei� SQLqueries for how routines an be reated in the database. Fur-ther we have given an outline for how the XQuery FLWORonstrut an be implemented. We have also given the algo-rithms for reonstruting an XML doument, or a fragmentof it.We have argued that our implementation is simple and gen-eral, by omparing it to related work. We believe that ourmethod has some advantages ompared to these other stud-ies in the ontext of simpliity and generality. Though manyaspets have not been taken into onsideration. Future workould inlude omparison with other studies regarding spaeand time omplexity, using statistis for a more exat eval-uation of di�erent methods.
7. ACKNOWLEDGEMENTSWe thank Albreht Shmidt, for supervising the proess ofdevelopment and the writing of this artile. We also thankour fellow students Christian Andersen, Tim Boesen andDennis Kjærul� for valuable disussions on the subjet ofXML and related theory. All mentioned individuals are, atthe time of writing, a�liated to the Department of Com-puter Siene at Aalborg University, Denmark.
8. RELATED WORKShredding, querying, and round-tripping XML data has beenthe topi of various earlier artiles. [13, 15, 16℄ deal withshredding and round-tripping representing XML �les as treesin the database. Additionally [16℄ makes use of a ��at�database representation. [9℄ uses a tree-representation in thedatabase, but provides a ��at� view for querying. [19℄ fouseson order enoding methods (�Global Order�, �Loal Order�,and �Dewey Order�) that promise to keep the ordering ofXML douments in an unordered database. [11℄ desribesthe mapping of DTDs onto objet-relational database sys-tems. The main topis of [13, 14℄ are querying, the latterusing the shredding strategies �Shared Inline� and �Edge�from other artiles as approahes for ase studies. [7℄ alsodeals with querying but outlines an implementation of anXQuery and XPath ompiler, proposing the use of equi-joinsfor implementing the iterative, for-bound variables.
9. REFERENCES[1℄ About SAX. http://sax.soureforge.net/.

[2℄ Joan Aliprand, Julie Allen, Joe Beker, Mark Davis,Mihael Everson, Asmus Freytag, John Jenkins, MikeKsar, Rik MGowan, Eri Muller, Lisa Moore, MihelSuignard, and Ken Whistler, editors. The UniodeStandard � Version 4.0, hapter 3.9, page 77. TheUniode Consortium,http://www.uniode.org/versions/Uniode4.0.0/,August 2003.[3℄ Sott Boag, Don Chamberlin, Mary F. Fernández,Daniela Floresu, Jonathan Robie, and Jér�meSiméon. XQuery 1.0: An XML Query Language. W3C,http://www.w3.org/TR/xquery, November 2003.[4℄ John Boyer. Canonial XML 1.0 Reommendation.W3C, http://www.w3.org/TR/xml-14n, Marh 2001.[5℄ Tim Bray, Jean Paoli, C. M. Sperberg-MQueen, EvaMaler, and François Yergau. Extensible MarkupLanguage (XML) 1.0. W3C,http://www.w3.org/TR/REC-xml/, 3rd edition,Feburary 2004.[6℄ Tim Bray, Jean Paoli, C. M. Sperberg-MQueen, EvaMaler, and François Yergau. Extensible MarkupLanguage (XML) 1.0. W3C,http://www.w3.org/TR/REC-xml/, 3rd edition,Feburary 2004. Setion 3.1.[7℄ Byron Choi, Mary Fernández, and Jér�me Siméon.The XQuery Formal Semantis: A Foundation forImplementation and Optimization. Tehnial report,University of Pennsylvania, 2002.[8℄ James Clark and Steve DeRose. XML Path Language(XPath). W3C, http://www.w3.org/TR/xpath,November 1999.[9℄ Daniela Floresu and Donald Kossmann. Storing andQuerying XML Data using an RDBMS. IEEE DataEngeneering Bulletin, 22(3):27�34, 1999.[10℄ Apahe Software Foundation. Xeres.http://xml.apahe.org/.[11℄ Meike Klettke and Holger Meyer. XML andObjet-Relational Database Systems: EnhaningStrutural Mappings Based on Statistis. In TheWorld Wide Web and Databases: Third InternationalWorkshop WebDB 2000, volume 1997, pages 151�170.Springer-Verlag Heidelberg, 2001.[12℄ Edward M. MCreight Rudolf Bayer. Organizationand maintenane of large ordered indies. In AtaInformatia, volume 1, pages 173�189, 1972.[13℄ Albreht Shmidt, Martin Kersten, MenzoWindhouwer, and Florian Waas. E�ient RelationalStorage and Retrieval of XML Douments. In TheWorld Wide Web and Databases: Third InternationalWorkshop WebDB 2000, volume 1997, pages 137�150.Springer-Verlag Heidelberg, 2001.[14℄ Jayavel Shanmugasundaram, Eugene Shekita, JerryKieman, Rajasekar Krishnamurthy, Efstratios Viglas,Je�rey Naughton, and Igor Tatarinov. A GeneralTehnique for Querying XML Douments using aRelational Database System. ACM SIGMOD,30(3):20�26, September 2001.11

[15℄ Jayavel Shanmugasundaram, Kristin Tufte, Gang He,Chun Zhang, David DeWitt, and Je�rey Naughton.Relational Databases for Querying XML Douments:Limitations and Opportunities. In 25th Very LargeData Base Endowment Conferene, 1999.[16℄ Takeyuki Shimura, Masatoshi Yoshikawa, andShunsuke Uemura. Storage and Retrieval of XMLDouments Using Objet-Relational Databases. InDatabase and Expert Systems Appliations: 10thInternational Conferene, DEXA '99, volume 1677,page 206. Springer-Verlag Heidelberg, 1999.[17℄ Abraham Silbershatz, Henry F. Korth, andS. Sudarshan. Database System Conepts, hapter 4-7.MGraw-Hill, 4th edition, 2002.[18℄ Kimbro Staken. Introdution to Native XMLDatabases, Otober 2001. http://www.xml.om/pub/a/2001/10/31/nativexmldb.html.[19℄ Igor Tatarinov, Stratis D. Viglas, Kevin Beyer,Jayavel Shanmugasundaram, Eugene Shekita, andChun Zhang. Storing and Querying Ordered XMLUsing a Relational Database System. In 2002 ACMSIGMOD International Conferene on Management ofData, pages 204�215. ACM Press, 2002.[20℄ W3C, http://www.w3.org/DOM/. Doument ObjetModel (DOM).[21℄ W3C. HyperText Markup Language Homepage. W3C,http://www.w3.org/MarkUp.[22℄ WhatIs.om. http://whatis.om/. Searh for�roundtripping�.Referenes ontaining URLs are valid as of May 28, 2004.

12

